Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem70 Structured version   Visualization version   GIF version

Theorem fourierdlem70 46181
Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem70.a (𝜑𝐴 ∈ ℝ)
fourierdlem70.2 (𝜑𝐵 ∈ ℝ)
fourierdlem70.aleb (𝜑𝐴𝐵)
fourierdlem70.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
fourierdlem70.m (𝜑𝑀 ∈ ℕ)
fourierdlem70.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem70.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem70.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem70.qlt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem70.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem70.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem70.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem70.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem70 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹,𝑠   𝑥,𝐹,𝑠   𝑖,𝐼,𝑠   𝑥,𝐼   𝐿,𝑠   𝑖,𝑀,𝑠   𝑄,𝑖,𝑠   𝑥,𝑄   𝑅,𝑠   𝜑,𝑖,𝑠   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑅(𝑥,𝑖)   𝐿(𝑥,𝑖)   𝑀(𝑥)

Proof of Theorem fourierdlem70
Dummy variables 𝑡 𝑣 𝑦 𝑤 𝑏 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 9281 . . 3 {ran 𝑄, ran 𝐼} ∈ Fin
21a1i 11 . 2 (𝜑 → {ran 𝑄, ran 𝐼} ∈ Fin)
3 simpr 484 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 {ran 𝑄, ran 𝐼})
4 fourierdlem70.q . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
5 ovex 7423 . . . . . . . . . . 11 (0...𝑀) ∈ V
6 fex 7203 . . . . . . . . . . 11 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑𝑄 ∈ V)
8 rnexg 7881 . . . . . . . . . 10 (𝑄 ∈ V → ran 𝑄 ∈ V)
97, 8syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ V)
10 fzofi 13946 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
11 fourierdlem70.i . . . . . . . . . . . . 13 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1211rnmptfi 45172 . . . . . . . . . . . 12 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
1310, 12ax-mp 5 . . . . . . . . . . 11 ran 𝐼 ∈ Fin
1413elexi 3473 . . . . . . . . . 10 ran 𝐼 ∈ V
1514uniex 7720 . . . . . . . . 9 ran 𝐼 ∈ V
16 uniprg 4890 . . . . . . . . 9 ((ran 𝑄 ∈ V ∧ ran 𝐼 ∈ V) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
179, 15, 16sylancl 586 . . . . . . . 8 (𝜑 {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
1817adantr 480 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
193, 18eleqtrd 2831 . . . . . 6 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (ran 𝑄 ran 𝐼))
20 eqid 2730 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))}) = (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})
21 fourierdlem70.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
22 reex 11166 . . . . . . . . . . . . . . 15 ℝ ∈ V
2322, 5elmap 8847 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
244, 23sylibr 234 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
25 fourierdlem70.q0 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = 𝐴)
26 fourierdlem70.qm . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) = 𝐵)
2725, 26jca 511 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
28 fourierdlem70.qlt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928ralrimiva 3126 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
3024, 27, 29jca32 515 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3120fourierdlem2 46114 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3221, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3330, 32mpbird 257 . . . . . . . . . . 11 (𝜑𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀))
3420, 21, 33fourierdlem15 46127 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3534frnd 6699 . . . . . . . . 9 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
3635sselda 3949 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
3736adantlr 715 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
38 simpll 766 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝜑)
39 elunnel1 4120 . . . . . . . . 9 ((𝑠 ∈ (ran 𝑄 ran 𝐼) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
4039adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
41 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → 𝑠 ran 𝐼)
4211funmpt2 6558 . . . . . . . . . . 11 Fun 𝐼
43 elunirn 7228 . . . . . . . . . . 11 (Fun 𝐼 → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4442, 43mp1i 13 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4541, 44mpbid 232 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖))
46 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
47 ovex 7423 . . . . . . . . . . . . . . . . . . 19 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4847, 11dmmpti 6665 . . . . . . . . . . . . . . . . . 18 dom 𝐼 = (0..^𝑀)
4946, 48eleqtrdi 2839 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
5011fvmpt2 6982 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5149, 47, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝑖 ∈ dom 𝐼 → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
53 ioossicc 13401 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
54 fourierdlem70.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
5554rexrd 11231 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐴 ∈ ℝ*)
57 fourierdlem70.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
5857rexrd 11231 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
5958adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐵 ∈ ℝ*)
6034adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
6149adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
6256, 59, 60, 61fourierdlem8 46120 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6353, 62sstrid 3961 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6452, 63eqsstrd 3984 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
65643adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
66 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐼𝑖))
6765, 66sseldd 3950 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐴[,]𝐵))
68673exp 1119 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
6968adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7069rexlimdv 3133 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵)))
7145, 70mpd 15 . . . . . . . 8 ((𝜑𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
7238, 40, 71syl2anc 584 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
7337, 72pm2.61dan 812 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) → 𝑠 ∈ (𝐴[,]𝐵))
7419, 73syldan 591 . . . . 5 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (𝐴[,]𝐵))
75 fourierdlem70.f . . . . . 6 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
7675ffvelcdmda 7059 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹𝑠) ∈ ℝ)
7774, 76syldan 591 . . . 4 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℝ)
7877recnd 11209 . . 3 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℂ)
7978abscld 15412 . 2 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (abs‘(𝐹𝑠)) ∈ ℝ)
80 simpr 484 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → 𝑤 = ran 𝑄)
814adantr 480 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
82 fzfid 13945 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → (0...𝑀) ∈ Fin)
83 rnffi 45176 . . . . . . 7 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8481, 82, 83syl2anc 584 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → ran 𝑄 ∈ Fin)
8580, 84eqeltrd 2829 . . . . 5 ((𝜑𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8685adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
88 simpll 766 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝜑)
89 simpr 484 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠𝑤)
90 simpl 482 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑤 = ran 𝑄)
9189, 90eleqtrd 2831 . . . . . . . . . . 11 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9291adantll 714 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9388, 92, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ (𝐴[,]𝐵))
9487, 93ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℝ)
9594recnd 11209 . . . . . . 7 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℂ)
9695abscld 15412 . . . . . 6 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (abs‘(𝐹𝑠)) ∈ ℝ)
9796ralrimiva 3126 . . . . 5 ((𝜑𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
9897adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
99 fimaxre3 12136 . . . 4 ((𝑤 ∈ Fin ∧ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
10086, 98, 99syl2anc 584 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
101 simpll 766 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝜑)
102 neqne 2934 . . . . . 6 𝑤 = ran 𝑄𝑤 ≠ ran 𝑄)
103 elprn1 45638 . . . . . 6 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ 𝑤 ≠ ran 𝑄) → 𝑤 = ran 𝐼)
104102, 103sylan2 593 . . . . 5 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
105104adantll 714 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
10610, 12mp1i 13 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
107 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
108107a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
10975, 108fssd 6708 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
110109ad2antrr 726 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11171adantlr 715 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
112110, 111ffvelcdmd 7060 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (𝐹𝑠) ∈ ℂ)
113112abscld 15412 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (abs‘(𝐹𝑠)) ∈ ℝ)
11447, 11fnmpti 6664 . . . . . . . . . 10 𝐼 Fn (0..^𝑀)
115 fvelrnb 6924 . . . . . . . . . 10 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
116114, 115ax-mp 5 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
117116biimpi 216 . . . . . . . 8 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
118117adantl 481 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1194adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
120 elfzofz 13643 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
121120adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
122119, 121ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
123 fzofzp1 13732 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
124123adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
125119, 124ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
126 fourierdlem70.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
127 fourierdlem70.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
128 fourierdlem70.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129122, 125, 126, 127, 128cncfioobd 45902 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏)
130 fvres 6880 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠) = (𝐹𝑠))
131130fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) = (abs‘(𝐹𝑠)))
132131breq1d 5120 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
133132adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
134133ralbidva 3155 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
135134rexbidv 3158 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
136129, 135mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
1371363adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
13847, 50mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139138eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
140139adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
141 simpr 484 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (𝐼𝑖) = 𝑡)
142140, 141eqtrd 2765 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
143142raleqdv 3301 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
144143rexbidv 3158 . . . . . . . . . . . 12 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
1451443adant1 1130 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
146137, 145mpbid 232 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
1471463exp 1119 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
148147adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
149148rexlimdv 3133 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
150118, 149mpd 15 . . . . . 6 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
151150adantlr 715 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
152 eqimss 4008 . . . . . 6 (𝑤 = ran 𝐼𝑤 ran 𝐼)
153152adantl 481 . . . . 5 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
154106, 113, 151, 153ssfiunibd 45314 . . . 4 ((𝜑𝑤 = ran 𝐼) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
155101, 105, 154syl2anc 584 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
156100, 155pm2.61dan 812 . 2 ((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
15721ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1584ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
159 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
16025eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
16126eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
162160, 161oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
164159, 163eleqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165164adantr 480 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
166 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ¬ 𝑡 ∈ ran 𝑄)
167 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
168167breq1d 5120 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑡 ↔ (𝑄𝑗) < 𝑡))
169168cbvrabv 3419 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}
170169supeq1i 9405 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}, ℝ, < )
171157, 158, 165, 166, 170fourierdlem25 46137 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172138eleq2d 2815 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑡 ∈ (𝐼𝑖) ↔ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
173172rexbiia 3075 . . . . . . . . . . 11 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174171, 173sylibr 234 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖))
17548eqcomi 2739 . . . . . . . . . . 11 (0..^𝑀) = dom 𝐼
176175rexeqi 3300 . . . . . . . . . 10 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
177174, 176sylib 218 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
178 elunirn 7228 . . . . . . . . . 10 (Fun 𝐼 → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
17942, 178mp1i 13 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
180177, 179mpbird 257 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ran 𝐼)
181180ex 412 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (¬ 𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
182181orrd 863 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
183 elun 4119 . . . . . 6 (𝑡 ∈ (ran 𝑄 ran 𝐼) ↔ (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
184182, 183sylibr 234 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (ran 𝑄 ran 𝐼))
185184ralrimiva 3126 . . . 4 (𝜑 → ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
186 dfss3 3938 . . . 4 ((𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
187185, 186sylibr 234 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼))
188187, 17sseqtrrd 3987 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ {ran 𝑄, ran 𝐼})
1892, 79, 156, 188ssfiunibd 45314 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  wss 3917  {cpr 4594   cuni 4874   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cn 12193  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  abscabs 15207  cnccncf 24776   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774
This theorem is referenced by:  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator