Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem70 Structured version   Visualization version   GIF version

Theorem fourierdlem70 46222
Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem70.a (𝜑𝐴 ∈ ℝ)
fourierdlem70.2 (𝜑𝐵 ∈ ℝ)
fourierdlem70.aleb (𝜑𝐴𝐵)
fourierdlem70.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
fourierdlem70.m (𝜑𝑀 ∈ ℕ)
fourierdlem70.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem70.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem70.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem70.qlt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem70.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem70.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem70.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem70.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem70 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹,𝑠   𝑥,𝐹,𝑠   𝑖,𝐼,𝑠   𝑥,𝐼   𝐿,𝑠   𝑖,𝑀,𝑠   𝑄,𝑖,𝑠   𝑥,𝑄   𝑅,𝑠   𝜑,𝑖,𝑠   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑅(𝑥,𝑖)   𝐿(𝑥,𝑖)   𝑀(𝑥)

Proof of Theorem fourierdlem70
Dummy variables 𝑡 𝑣 𝑦 𝑤 𝑏 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 9208 . . 3 {ran 𝑄, ran 𝐼} ∈ Fin
21a1i 11 . 2 (𝜑 → {ran 𝑄, ran 𝐼} ∈ Fin)
3 simpr 484 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 {ran 𝑄, ran 𝐼})
4 fourierdlem70.q . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
5 ovex 7379 . . . . . . . . . . 11 (0...𝑀) ∈ V
6 fex 7160 . . . . . . . . . . 11 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑𝑄 ∈ V)
8 rnexg 7832 . . . . . . . . . 10 (𝑄 ∈ V → ran 𝑄 ∈ V)
97, 8syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ V)
10 fzofi 13881 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
11 fourierdlem70.i . . . . . . . . . . . . 13 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1211rnmptfi 45216 . . . . . . . . . . . 12 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
1310, 12ax-mp 5 . . . . . . . . . . 11 ran 𝐼 ∈ Fin
1413elexi 3459 . . . . . . . . . 10 ran 𝐼 ∈ V
1514uniex 7674 . . . . . . . . 9 ran 𝐼 ∈ V
16 uniprg 4872 . . . . . . . . 9 ((ran 𝑄 ∈ V ∧ ran 𝐼 ∈ V) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
179, 15, 16sylancl 586 . . . . . . . 8 (𝜑 {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
1817adantr 480 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
193, 18eleqtrd 2833 . . . . . 6 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (ran 𝑄 ran 𝐼))
20 eqid 2731 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))}) = (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})
21 fourierdlem70.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
22 reex 11097 . . . . . . . . . . . . . . 15 ℝ ∈ V
2322, 5elmap 8795 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
244, 23sylibr 234 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
25 fourierdlem70.q0 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = 𝐴)
26 fourierdlem70.qm . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) = 𝐵)
2725, 26jca 511 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
28 fourierdlem70.qlt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928ralrimiva 3124 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
3024, 27, 29jca32 515 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3120fourierdlem2 46155 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3221, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3330, 32mpbird 257 . . . . . . . . . . 11 (𝜑𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀))
3420, 21, 33fourierdlem15 46168 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3534frnd 6659 . . . . . . . . 9 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
3635sselda 3929 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
3736adantlr 715 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
38 simpll 766 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝜑)
39 elunnel1 4101 . . . . . . . . 9 ((𝑠 ∈ (ran 𝑄 ran 𝐼) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
4039adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
41 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → 𝑠 ran 𝐼)
4211funmpt2 6520 . . . . . . . . . . 11 Fun 𝐼
43 elunirn 7185 . . . . . . . . . . 11 (Fun 𝐼 → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4442, 43mp1i 13 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4541, 44mpbid 232 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖))
46 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
47 ovex 7379 . . . . . . . . . . . . . . . . . . 19 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4847, 11dmmpti 6625 . . . . . . . . . . . . . . . . . 18 dom 𝐼 = (0..^𝑀)
4946, 48eleqtrdi 2841 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
5011fvmpt2 6940 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5149, 47, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝑖 ∈ dom 𝐼 → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
53 ioossicc 13333 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
54 fourierdlem70.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
5554rexrd 11162 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐴 ∈ ℝ*)
57 fourierdlem70.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
5857rexrd 11162 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
5958adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐵 ∈ ℝ*)
6034adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
6149adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
6256, 59, 60, 61fourierdlem8 46161 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6353, 62sstrid 3941 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6452, 63eqsstrd 3964 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
65643adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
66 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐼𝑖))
6765, 66sseldd 3930 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐴[,]𝐵))
68673exp 1119 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
6968adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7069rexlimdv 3131 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵)))
7145, 70mpd 15 . . . . . . . 8 ((𝜑𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
7238, 40, 71syl2anc 584 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
7337, 72pm2.61dan 812 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) → 𝑠 ∈ (𝐴[,]𝐵))
7419, 73syldan 591 . . . . 5 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (𝐴[,]𝐵))
75 fourierdlem70.f . . . . . 6 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
7675ffvelcdmda 7017 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹𝑠) ∈ ℝ)
7774, 76syldan 591 . . . 4 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℝ)
7877recnd 11140 . . 3 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℂ)
7978abscld 15346 . 2 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (abs‘(𝐹𝑠)) ∈ ℝ)
80 simpr 484 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → 𝑤 = ran 𝑄)
814adantr 480 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
82 fzfid 13880 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → (0...𝑀) ∈ Fin)
83 rnffi 45220 . . . . . . 7 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8481, 82, 83syl2anc 584 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → ran 𝑄 ∈ Fin)
8580, 84eqeltrd 2831 . . . . 5 ((𝜑𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8685adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
88 simpll 766 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝜑)
89 simpr 484 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠𝑤)
90 simpl 482 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑤 = ran 𝑄)
9189, 90eleqtrd 2833 . . . . . . . . . . 11 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9291adantll 714 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9388, 92, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ (𝐴[,]𝐵))
9487, 93ffvelcdmd 7018 . . . . . . . 8 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℝ)
9594recnd 11140 . . . . . . 7 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℂ)
9695abscld 15346 . . . . . 6 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (abs‘(𝐹𝑠)) ∈ ℝ)
9796ralrimiva 3124 . . . . 5 ((𝜑𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
9897adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
99 fimaxre3 12068 . . . 4 ((𝑤 ∈ Fin ∧ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
10086, 98, 99syl2anc 584 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
101 simpll 766 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝜑)
102 neqne 2936 . . . . . 6 𝑤 = ran 𝑄𝑤 ≠ ran 𝑄)
103 elprn1 4601 . . . . . 6 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ 𝑤 ≠ ran 𝑄) → 𝑤 = ran 𝐼)
104102, 103sylan2 593 . . . . 5 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
105104adantll 714 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
10610, 12mp1i 13 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
107 ax-resscn 11063 . . . . . . . . . 10 ℝ ⊆ ℂ
108107a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
10975, 108fssd 6668 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
110109ad2antrr 726 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11171adantlr 715 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
112110, 111ffvelcdmd 7018 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (𝐹𝑠) ∈ ℂ)
113112abscld 15346 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (abs‘(𝐹𝑠)) ∈ ℝ)
11447, 11fnmpti 6624 . . . . . . . . . 10 𝐼 Fn (0..^𝑀)
115 fvelrnb 6882 . . . . . . . . . 10 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
116114, 115ax-mp 5 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
117116biimpi 216 . . . . . . . 8 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
118117adantl 481 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1194adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
120 elfzofz 13575 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
121120adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
122119, 121ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
123 fzofzp1 13664 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
124123adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
125119, 124ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
126 fourierdlem70.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
127 fourierdlem70.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
128 fourierdlem70.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129122, 125, 126, 127, 128cncfioobd 45943 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏)
130 fvres 6841 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠) = (𝐹𝑠))
131130fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) = (abs‘(𝐹𝑠)))
132131breq1d 5099 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
133132adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
134133ralbidva 3153 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
135134rexbidv 3156 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
136129, 135mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
1371363adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
13847, 50mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139138eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
140139adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
141 simpr 484 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (𝐼𝑖) = 𝑡)
142140, 141eqtrd 2766 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
143142raleqdv 3292 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
144143rexbidv 3156 . . . . . . . . . . . 12 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
1451443adant1 1130 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
146137, 145mpbid 232 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
1471463exp 1119 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
148147adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
149148rexlimdv 3131 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
150118, 149mpd 15 . . . . . 6 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
151150adantlr 715 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
152 eqimss 3988 . . . . . 6 (𝑤 = ran 𝐼𝑤 ran 𝐼)
153152adantl 481 . . . . 5 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
154106, 113, 151, 153ssfiunibd 45358 . . . 4 ((𝜑𝑤 = ran 𝐼) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
155101, 105, 154syl2anc 584 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
156100, 155pm2.61dan 812 . 2 ((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
15721ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1584ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
159 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
16025eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
16126eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
162160, 161oveq12d 7364 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
164159, 163eleqtrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165164adantr 480 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
166 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ¬ 𝑡 ∈ ran 𝑄)
167 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
168167breq1d 5099 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑡 ↔ (𝑄𝑗) < 𝑡))
169168cbvrabv 3405 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}
170169supeq1i 9331 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}, ℝ, < )
171157, 158, 165, 166, 170fourierdlem25 46178 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172138eleq2d 2817 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑡 ∈ (𝐼𝑖) ↔ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
173172rexbiia 3077 . . . . . . . . . . 11 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174171, 173sylibr 234 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖))
17548eqcomi 2740 . . . . . . . . . . 11 (0..^𝑀) = dom 𝐼
176175rexeqi 3291 . . . . . . . . . 10 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
177174, 176sylib 218 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
178 elunirn 7185 . . . . . . . . . 10 (Fun 𝐼 → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
17942, 178mp1i 13 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
180177, 179mpbird 257 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ran 𝐼)
181180ex 412 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (¬ 𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
182181orrd 863 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
183 elun 4100 . . . . . 6 (𝑡 ∈ (ran 𝑄 ran 𝐼) ↔ (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
184182, 183sylibr 234 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (ran 𝑄 ran 𝐼))
185184ralrimiva 3124 . . . 4 (𝜑 → ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
186 dfss3 3918 . . . 4 ((𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
187185, 186sylibr 234 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼))
188187, 17sseqtrrd 3967 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ {ran 𝑄, ran 𝐼})
1892, 79, 156, 188ssfiunibd 45358 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  wss 3897  {cpr 4575   cuni 4856   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cn 12125  (,)cioo 13245  [,]cicc 13248  ...cfz 13407  ..^cfzo 13554  abscabs 15141  cnccncf 24796   lim climc 25790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794
This theorem is referenced by:  fourierdlem103  46255  fourierdlem104  46256
  Copyright terms: Public domain W3C validator