Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem70 Structured version   Visualization version   GIF version

Theorem fourierdlem70 42460
Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem70.a (𝜑𝐴 ∈ ℝ)
fourierdlem70.2 (𝜑𝐵 ∈ ℝ)
fourierdlem70.aleb (𝜑𝐴𝐵)
fourierdlem70.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
fourierdlem70.m (𝜑𝑀 ∈ ℕ)
fourierdlem70.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem70.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem70.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem70.qlt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem70.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem70.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem70.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem70.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem70 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹,𝑠   𝑥,𝐹,𝑠   𝑖,𝐼,𝑠   𝑥,𝐼   𝐿,𝑠   𝑖,𝑀,𝑠   𝑄,𝑖,𝑠   𝑥,𝑄   𝑅,𝑠   𝜑,𝑖,𝑠   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑅(𝑥,𝑖)   𝐿(𝑥,𝑖)   𝑀(𝑥)

Proof of Theorem fourierdlem70
Dummy variables 𝑡 𝑣 𝑦 𝑤 𝑏 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 8792 . . 3 {ran 𝑄, ran 𝐼} ∈ Fin
21a1i 11 . 2 (𝜑 → {ran 𝑄, ran 𝐼} ∈ Fin)
3 simpr 487 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 {ran 𝑄, ran 𝐼})
4 fourierdlem70.q . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
5 ovex 7188 . . . . . . . . . . 11 (0...𝑀) ∈ V
6 fex 6988 . . . . . . . . . . 11 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
74, 5, 6sylancl 588 . . . . . . . . . 10 (𝜑𝑄 ∈ V)
8 rnexg 7613 . . . . . . . . . 10 (𝑄 ∈ V → ran 𝑄 ∈ V)
97, 8syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ V)
10 fzofi 13341 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
11 fourierdlem70.i . . . . . . . . . . . . 13 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1211rnmptfi 41425 . . . . . . . . . . . 12 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
1310, 12ax-mp 5 . . . . . . . . . . 11 ran 𝐼 ∈ Fin
1413elexi 3513 . . . . . . . . . 10 ran 𝐼 ∈ V
1514uniex 7466 . . . . . . . . 9 ran 𝐼 ∈ V
16 uniprg 4855 . . . . . . . . 9 ((ran 𝑄 ∈ V ∧ ran 𝐼 ∈ V) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
179, 15, 16sylancl 588 . . . . . . . 8 (𝜑 {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
1817adantr 483 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
193, 18eleqtrd 2915 . . . . . 6 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (ran 𝑄 ran 𝐼))
20 eqid 2821 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))}) = (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})
21 fourierdlem70.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
22 reex 10627 . . . . . . . . . . . . . . 15 ℝ ∈ V
2322, 5elmap 8434 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
244, 23sylibr 236 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
25 fourierdlem70.q0 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = 𝐴)
26 fourierdlem70.qm . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) = 𝐵)
2725, 26jca 514 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
28 fourierdlem70.qlt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928ralrimiva 3182 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
3024, 27, 29jca32 518 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3120fourierdlem2 42393 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3221, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3330, 32mpbird 259 . . . . . . . . . . 11 (𝜑𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀))
3420, 21, 33fourierdlem15 42406 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3534frnd 6520 . . . . . . . . 9 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
3635sselda 3966 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
3736adantlr 713 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
38 simpll 765 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝜑)
39 elunnel1 4125 . . . . . . . . 9 ((𝑠 ∈ (ran 𝑄 ran 𝐼) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
4039adantll 712 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
41 simpr 487 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → 𝑠 ran 𝐼)
4211funmpt2 6393 . . . . . . . . . . 11 Fun 𝐼
43 elunirn 7009 . . . . . . . . . . 11 (Fun 𝐼 → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4442, 43mp1i 13 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4541, 44mpbid 234 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖))
46 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
47 ovex 7188 . . . . . . . . . . . . . . . . . . 19 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4847, 11dmmpti 6491 . . . . . . . . . . . . . . . . . 18 dom 𝐼 = (0..^𝑀)
4946, 48eleqtrdi 2923 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
5011fvmpt2 6778 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5149, 47, 50sylancl 588 . . . . . . . . . . . . . . . 16 (𝑖 ∈ dom 𝐼 → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5251adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
53 ioossicc 12821 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
54 fourierdlem70.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
5554rexrd 10690 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
5655adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐴 ∈ ℝ*)
57 fourierdlem70.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
5857rexrd 10690 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
5958adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐵 ∈ ℝ*)
6034adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
6149adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
6256, 59, 60, 61fourierdlem8 42399 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6353, 62sstrid 3977 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6452, 63eqsstrd 4004 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
65643adant3 1128 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
66 simp3 1134 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐼𝑖))
6765, 66sseldd 3967 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐴[,]𝐵))
68673exp 1115 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
6968adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7069rexlimdv 3283 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵)))
7145, 70mpd 15 . . . . . . . 8 ((𝜑𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
7238, 40, 71syl2anc 586 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
7337, 72pm2.61dan 811 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) → 𝑠 ∈ (𝐴[,]𝐵))
7419, 73syldan 593 . . . . 5 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (𝐴[,]𝐵))
75 fourierdlem70.f . . . . . 6 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
7675ffvelrnda 6850 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹𝑠) ∈ ℝ)
7774, 76syldan 593 . . . 4 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℝ)
7877recnd 10668 . . 3 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℂ)
7978abscld 14795 . 2 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (abs‘(𝐹𝑠)) ∈ ℝ)
80 simpr 487 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → 𝑤 = ran 𝑄)
814adantr 483 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
82 fzfid 13340 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → (0...𝑀) ∈ Fin)
83 rnffi 41429 . . . . . . 7 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8481, 82, 83syl2anc 586 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → ran 𝑄 ∈ Fin)
8580, 84eqeltrd 2913 . . . . 5 ((𝜑𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8685adantlr 713 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8775ad2antrr 724 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
88 simpll 765 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝜑)
89 simpr 487 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠𝑤)
90 simpl 485 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑤 = ran 𝑄)
9189, 90eleqtrd 2915 . . . . . . . . . . 11 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9291adantll 712 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9388, 92, 36syl2anc 586 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ (𝐴[,]𝐵))
9487, 93ffvelrnd 6851 . . . . . . . 8 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℝ)
9594recnd 10668 . . . . . . 7 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℂ)
9695abscld 14795 . . . . . 6 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (abs‘(𝐹𝑠)) ∈ ℝ)
9796ralrimiva 3182 . . . . 5 ((𝜑𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
9897adantlr 713 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
99 fimaxre3 11586 . . . 4 ((𝑤 ∈ Fin ∧ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
10086, 98, 99syl2anc 586 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
101 simpll 765 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝜑)
102 neqne 3024 . . . . . 6 𝑤 = ran 𝑄𝑤 ≠ ran 𝑄)
103 elprn1 41912 . . . . . 6 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ 𝑤 ≠ ran 𝑄) → 𝑤 = ran 𝐼)
104102, 103sylan2 594 . . . . 5 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
105104adantll 712 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
10610, 12mp1i 13 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
107 ax-resscn 10593 . . . . . . . . . 10 ℝ ⊆ ℂ
108107a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
10975, 108fssd 6527 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
110109ad2antrr 724 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11171adantlr 713 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
112110, 111ffvelrnd 6851 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (𝐹𝑠) ∈ ℂ)
113112abscld 14795 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (abs‘(𝐹𝑠)) ∈ ℝ)
11447, 11fnmpti 6490 . . . . . . . . . 10 𝐼 Fn (0..^𝑀)
115 fvelrnb 6725 . . . . . . . . . 10 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
116114, 115ax-mp 5 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
117116biimpi 218 . . . . . . . 8 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
118117adantl 484 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1194adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
120 elfzofz 13052 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
121120adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
122119, 121ffvelrnd 6851 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
123 fzofzp1 13133 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
124123adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
125119, 124ffvelrnd 6851 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
126 fourierdlem70.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
127 fourierdlem70.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
128 fourierdlem70.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129122, 125, 126, 127, 128cncfioobd 42178 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏)
130 fvres 6688 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠) = (𝐹𝑠))
131130fveq2d 6673 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) = (abs‘(𝐹𝑠)))
132131breq1d 5075 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
133132adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
134133ralbidva 3196 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
135134rexbidv 3297 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
136129, 135mpbid 234 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
1371363adant3 1128 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
13847, 50mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139138eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
140139adantr 483 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
141 simpr 487 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (𝐼𝑖) = 𝑡)
142140, 141eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
143142raleqdv 3415 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
144143rexbidv 3297 . . . . . . . . . . . 12 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
1451443adant1 1126 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
146137, 145mpbid 234 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
1471463exp 1115 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
148147adantr 483 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
149148rexlimdv 3283 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
150118, 149mpd 15 . . . . . 6 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
151150adantlr 713 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
152 eqimss 4022 . . . . . 6 (𝑤 = ran 𝐼𝑤 ran 𝐼)
153152adantl 484 . . . . 5 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
154106, 113, 151, 153ssfiunibd 41574 . . . 4 ((𝜑𝑤 = ran 𝐼) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
155101, 105, 154syl2anc 586 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
156100, 155pm2.61dan 811 . 2 ((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
15721ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1584ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
159 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
16025eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
16126eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
162160, 161oveq12d 7173 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
164159, 163eleqtrd 2915 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165164adantr 483 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
166 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ¬ 𝑡 ∈ ran 𝑄)
167 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
168167breq1d 5075 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑡 ↔ (𝑄𝑗) < 𝑡))
169168cbvrabv 3491 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}
170169supeq1i 8910 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}, ℝ, < )
171157, 158, 165, 166, 170fourierdlem25 42416 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172138eleq2d 2898 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑡 ∈ (𝐼𝑖) ↔ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
173172rexbiia 3246 . . . . . . . . . . 11 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174171, 173sylibr 236 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖))
17548eqcomi 2830 . . . . . . . . . . 11 (0..^𝑀) = dom 𝐼
176175rexeqi 3414 . . . . . . . . . 10 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
177174, 176sylib 220 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
178 elunirn 7009 . . . . . . . . . 10 (Fun 𝐼 → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
17942, 178mp1i 13 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
180177, 179mpbird 259 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ran 𝐼)
181180ex 415 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (¬ 𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
182181orrd 859 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
183 elun 4124 . . . . . 6 (𝑡 ∈ (ran 𝑄 ran 𝐼) ↔ (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
184182, 183sylibr 236 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (ran 𝑄 ran 𝐼))
185184ralrimiva 3182 . . . 4 (𝜑 → ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
186 dfss3 3955 . . . 4 ((𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
187185, 186sylibr 236 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼))
188187, 17sseqtrrd 4007 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ {ran 𝑄, ran 𝐼})
1892, 79, 156, 188ssfiunibd 41574 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cun 3933  wss 3935  {cpr 4568   cuni 4837   class class class wbr 5065  cmpt 5145  dom cdm 5554  ran crn 5555  cres 5556  Fun wfun 6348   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Fincfn 8508  supcsup 8903  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539  *cxr 10673   < clt 10674  cle 10675  cn 11637  (,)cioo 12737  [,]cicc 12740  ...cfz 12891  ..^cfzo 13032  abscabs 14592  cnccncf 23483   lim climc 24459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-cn 21834  df-cnp 21835  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463
This theorem is referenced by:  fourierdlem103  42493  fourierdlem104  42494
  Copyright terms: Public domain W3C validator