Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem70 Structured version   Visualization version   GIF version

Theorem fourierdlem70 43392
Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem70.a (𝜑𝐴 ∈ ℝ)
fourierdlem70.2 (𝜑𝐵 ∈ ℝ)
fourierdlem70.aleb (𝜑𝐴𝐵)
fourierdlem70.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
fourierdlem70.m (𝜑𝑀 ∈ ℕ)
fourierdlem70.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem70.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem70.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem70.qlt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem70.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem70.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem70.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem70.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem70 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹,𝑠   𝑥,𝐹,𝑠   𝑖,𝐼,𝑠   𝑥,𝐼   𝐿,𝑠   𝑖,𝑀,𝑠   𝑄,𝑖,𝑠   𝑥,𝑄   𝑅,𝑠   𝜑,𝑖,𝑠   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑅(𝑥,𝑖)   𝐿(𝑥,𝑖)   𝑀(𝑥)

Proof of Theorem fourierdlem70
Dummy variables 𝑡 𝑣 𝑦 𝑤 𝑏 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 8946 . . 3 {ran 𝑄, ran 𝐼} ∈ Fin
21a1i 11 . 2 (𝜑 → {ran 𝑄, ran 𝐼} ∈ Fin)
3 simpr 488 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 {ran 𝑄, ran 𝐼})
4 fourierdlem70.q . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
5 ovex 7246 . . . . . . . . . . 11 (0...𝑀) ∈ V
6 fex 7042 . . . . . . . . . . 11 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
74, 5, 6sylancl 589 . . . . . . . . . 10 (𝜑𝑄 ∈ V)
8 rnexg 7682 . . . . . . . . . 10 (𝑄 ∈ V → ran 𝑄 ∈ V)
97, 8syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ V)
10 fzofi 13547 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
11 fourierdlem70.i . . . . . . . . . . . . 13 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1211rnmptfi 42380 . . . . . . . . . . . 12 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
1310, 12ax-mp 5 . . . . . . . . . . 11 ran 𝐼 ∈ Fin
1413elexi 3427 . . . . . . . . . 10 ran 𝐼 ∈ V
1514uniex 7529 . . . . . . . . 9 ran 𝐼 ∈ V
16 uniprg 4836 . . . . . . . . 9 ((ran 𝑄 ∈ V ∧ ran 𝐼 ∈ V) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
179, 15, 16sylancl 589 . . . . . . . 8 (𝜑 {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
1817adantr 484 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
193, 18eleqtrd 2840 . . . . . 6 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (ran 𝑄 ran 𝐼))
20 eqid 2737 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))}) = (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})
21 fourierdlem70.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
22 reex 10820 . . . . . . . . . . . . . . 15 ℝ ∈ V
2322, 5elmap 8552 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
244, 23sylibr 237 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
25 fourierdlem70.q0 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = 𝐴)
26 fourierdlem70.qm . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) = 𝐵)
2725, 26jca 515 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
28 fourierdlem70.qlt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928ralrimiva 3105 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
3024, 27, 29jca32 519 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3120fourierdlem2 43325 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3221, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3330, 32mpbird 260 . . . . . . . . . . 11 (𝜑𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑m (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀))
3420, 21, 33fourierdlem15 43338 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3534frnd 6553 . . . . . . . . 9 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
3635sselda 3901 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
3736adantlr 715 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
38 simpll 767 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝜑)
39 elunnel1 4064 . . . . . . . . 9 ((𝑠 ∈ (ran 𝑄 ran 𝐼) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
4039adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
41 simpr 488 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → 𝑠 ran 𝐼)
4211funmpt2 6419 . . . . . . . . . . 11 Fun 𝐼
43 elunirn 7064 . . . . . . . . . . 11 (Fun 𝐼 → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4442, 43mp1i 13 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4541, 44mpbid 235 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖))
46 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
47 ovex 7246 . . . . . . . . . . . . . . . . . . 19 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4847, 11dmmpti 6522 . . . . . . . . . . . . . . . . . 18 dom 𝐼 = (0..^𝑀)
4946, 48eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
5011fvmpt2 6829 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5149, 47, 50sylancl 589 . . . . . . . . . . . . . . . 16 (𝑖 ∈ dom 𝐼 → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5251adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
53 ioossicc 13021 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
54 fourierdlem70.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
5554rexrd 10883 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
5655adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐴 ∈ ℝ*)
57 fourierdlem70.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
5857rexrd 10883 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
5958adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐵 ∈ ℝ*)
6034adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
6149adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
6256, 59, 60, 61fourierdlem8 43331 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6353, 62sstrid 3912 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6452, 63eqsstrd 3939 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
65643adant3 1134 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
66 simp3 1140 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐼𝑖))
6765, 66sseldd 3902 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐴[,]𝐵))
68673exp 1121 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
6968adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7069rexlimdv 3202 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵)))
7145, 70mpd 15 . . . . . . . 8 ((𝜑𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
7238, 40, 71syl2anc 587 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
7337, 72pm2.61dan 813 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) → 𝑠 ∈ (𝐴[,]𝐵))
7419, 73syldan 594 . . . . 5 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (𝐴[,]𝐵))
75 fourierdlem70.f . . . . . 6 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
7675ffvelrnda 6904 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹𝑠) ∈ ℝ)
7774, 76syldan 594 . . . 4 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℝ)
7877recnd 10861 . . 3 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℂ)
7978abscld 15000 . 2 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (abs‘(𝐹𝑠)) ∈ ℝ)
80 simpr 488 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → 𝑤 = ran 𝑄)
814adantr 484 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
82 fzfid 13546 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → (0...𝑀) ∈ Fin)
83 rnffi 42384 . . . . . . 7 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8481, 82, 83syl2anc 587 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → ran 𝑄 ∈ Fin)
8580, 84eqeltrd 2838 . . . . 5 ((𝜑𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8685adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
88 simpll 767 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝜑)
89 simpr 488 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠𝑤)
90 simpl 486 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑤 = ran 𝑄)
9189, 90eleqtrd 2840 . . . . . . . . . . 11 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9291adantll 714 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9388, 92, 36syl2anc 587 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ (𝐴[,]𝐵))
9487, 93ffvelrnd 6905 . . . . . . . 8 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℝ)
9594recnd 10861 . . . . . . 7 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℂ)
9695abscld 15000 . . . . . 6 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (abs‘(𝐹𝑠)) ∈ ℝ)
9796ralrimiva 3105 . . . . 5 ((𝜑𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
9897adantlr 715 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
99 fimaxre3 11778 . . . 4 ((𝑤 ∈ Fin ∧ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
10086, 98, 99syl2anc 587 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
101 simpll 767 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝜑)
102 neqne 2948 . . . . . 6 𝑤 = ran 𝑄𝑤 ≠ ran 𝑄)
103 elprn1 42849 . . . . . 6 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ 𝑤 ≠ ran 𝑄) → 𝑤 = ran 𝐼)
104102, 103sylan2 596 . . . . 5 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
105104adantll 714 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
10610, 12mp1i 13 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
107 ax-resscn 10786 . . . . . . . . . 10 ℝ ⊆ ℂ
108107a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
10975, 108fssd 6563 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
110109ad2antrr 726 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11171adantlr 715 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
112110, 111ffvelrnd 6905 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (𝐹𝑠) ∈ ℂ)
113112abscld 15000 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (abs‘(𝐹𝑠)) ∈ ℝ)
11447, 11fnmpti 6521 . . . . . . . . . 10 𝐼 Fn (0..^𝑀)
115 fvelrnb 6773 . . . . . . . . . 10 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
116114, 115ax-mp 5 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
117116biimpi 219 . . . . . . . 8 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
118117adantl 485 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1194adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
120 elfzofz 13258 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
121120adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
122119, 121ffvelrnd 6905 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
123 fzofzp1 13339 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
124123adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
125119, 124ffvelrnd 6905 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
126 fourierdlem70.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
127 fourierdlem70.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
128 fourierdlem70.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129122, 125, 126, 127, 128cncfioobd 43113 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏)
130 fvres 6736 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠) = (𝐹𝑠))
131130fveq2d 6721 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) = (abs‘(𝐹𝑠)))
132131breq1d 5063 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
133132adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
134133ralbidva 3117 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
135134rexbidv 3216 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
136129, 135mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
1371363adant3 1134 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
13847, 50mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139138eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
140139adantr 484 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
141 simpr 488 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (𝐼𝑖) = 𝑡)
142140, 141eqtrd 2777 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
143142raleqdv 3325 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
144143rexbidv 3216 . . . . . . . . . . . 12 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
1451443adant1 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
146137, 145mpbid 235 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
1471463exp 1121 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
148147adantr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
149148rexlimdv 3202 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
150118, 149mpd 15 . . . . . 6 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
151150adantlr 715 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
152 eqimss 3957 . . . . . 6 (𝑤 = ran 𝐼𝑤 ran 𝐼)
153152adantl 485 . . . . 5 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
154106, 113, 151, 153ssfiunibd 42521 . . . 4 ((𝜑𝑤 = ran 𝐼) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
155101, 105, 154syl2anc 587 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
156100, 155pm2.61dan 813 . 2 ((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
15721ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1584ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
159 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
16025eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
16126eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
162160, 161oveq12d 7231 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
164159, 163eleqtrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
165164adantr 484 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
166 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ¬ 𝑡 ∈ ran 𝑄)
167 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
168167breq1d 5063 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑡 ↔ (𝑄𝑗) < 𝑡))
169168cbvrabv 3402 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}
170169supeq1i 9063 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}, ℝ, < )
171157, 158, 165, 166, 170fourierdlem25 43348 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172138eleq2d 2823 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑡 ∈ (𝐼𝑖) ↔ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
173172rexbiia 3169 . . . . . . . . . . 11 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
174171, 173sylibr 237 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖))
17548eqcomi 2746 . . . . . . . . . . 11 (0..^𝑀) = dom 𝐼
176175rexeqi 3324 . . . . . . . . . 10 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
177174, 176sylib 221 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
178 elunirn 7064 . . . . . . . . . 10 (Fun 𝐼 → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
17942, 178mp1i 13 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
180177, 179mpbird 260 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ran 𝐼)
181180ex 416 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (¬ 𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
182181orrd 863 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
183 elun 4063 . . . . . 6 (𝑡 ∈ (ran 𝑄 ran 𝐼) ↔ (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
184182, 183sylibr 237 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (ran 𝑄 ran 𝐼))
185184ralrimiva 3105 . . . 4 (𝜑 → ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
186 dfss3 3888 . . . 4 ((𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
187185, 186sylibr 237 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼))
188187, 17sseqtrrd 3942 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ {ran 𝑄, ran 𝐼})
1892, 79, 156, 188ssfiunibd 42521 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  cun 3864  wss 3866  {cpr 4543   cuni 4819   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552  cres 5553  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  supcsup 9056  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  *cxr 10866   < clt 10867  cle 10868  cn 11830  (,)cioo 12935  [,]cicc 12938  ...cfz 13095  ..^cfzo 13238  abscabs 14797  cnccncf 23773   lim climc 24759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-cn 22124  df-cnp 22125  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763
This theorem is referenced by:  fourierdlem103  43425  fourierdlem104  43426
  Copyright terms: Public domain W3C validator