Step | Hyp | Ref
| Expression |
1 | | prfi 9019 |
. . . 4
⊢ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼} ∈
Fin |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} ∈ Fin) |
3 | | fourierdlem71.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → 𝐹:dom 𝐹⟶ℝ) |
5 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → 𝜑) |
6 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → 𝑥 ∈ ∪ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) |
7 | | fourierdlem71.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
8 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢
(0...𝑀) ∈
V |
9 | 8 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑀) ∈ V) |
10 | 7, 9 | fexd 7085 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ V) |
11 | | rnexg 7725 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ V → ran 𝑄 ∈ V) |
12 | | inex1g 5238 |
. . . . . . . . . . 11
⊢ (ran
𝑄 ∈ V → (ran
𝑄 ∩ dom 𝐹) ∈ V) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ V) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → (ran 𝑄 ∩ dom 𝐹) ∈ V) |
15 | | fourierdlem71.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
16 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑀) ∈
V |
17 | 16 | mptex 7081 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ V |
18 | 15, 17 | eqeltri 2835 |
. . . . . . . . . . . . 13
⊢ 𝐼 ∈ V |
19 | 18 | rnex 7733 |
. . . . . . . . . . . 12
⊢ ran 𝐼 ∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐼 ∈ V) |
21 | 20 | uniexd 7573 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran 𝐼 ∈ V) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → ∪ ran 𝐼 ∈ V) |
23 | | uniprg 4853 |
. . . . . . . . 9
⊢ (((ran
𝑄 ∩ dom 𝐹) ∈ V ∧ ∪ ran 𝐼 ∈ V) → ∪ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
24 | 14, 22, 23 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → ∪ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
25 | 6, 24 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
26 | | elinel2 4126 |
. . . . . . . . 9
⊢ (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹) |
27 | 26 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
28 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝜑) |
29 | | elunnel1 4080 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ ∪ ran
𝐼) |
30 | 29 | adantll 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ ∪ ran
𝐼) |
31 | 15 | funmpt2 6457 |
. . . . . . . . . . . . 13
⊢ Fun 𝐼 |
32 | | elunirn 7106 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐼 → (𝑥 ∈ ∪ ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖))) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖)) |
34 | 33 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ ran 𝐼 → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖)) |
35 | 34 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖)) |
36 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ dom 𝐼 → 𝑖 ∈ dom 𝐼) |
37 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V |
38 | 37, 15 | dmmpti 6561 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom 𝐼 = (0..^𝑀) |
39 | 36, 38 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ dom 𝐼 → 𝑖 ∈ (0..^𝑀)) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀)) |
41 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) |
42 | 15 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼‘𝑖) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
43 | 40, 41, 42 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → (𝐼‘𝑖) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
44 | | fourierdlem71.fcn |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
45 | | cncff 23962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
46 | | fdm 6593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
47 | 44, 45, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
48 | 39, 47 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
49 | | ssdmres 5903 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
50 | 48, 49 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
51 | 43, 50 | eqsstrd 3955 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼) → (𝐼‘𝑖) ⊆ dom 𝐹) |
52 | 51 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖)) → (𝐼‘𝑖) ⊆ dom 𝐹) |
53 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖)) → 𝑥 ∈ (𝐼‘𝑖)) |
54 | 52, 53 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖)) → 𝑥 ∈ dom 𝐹) |
55 | 54 | 3exp 1117 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼‘𝑖) → 𝑥 ∈ dom 𝐹))) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼‘𝑖) → 𝑥 ∈ dom 𝐹))) |
57 | 56 | rexlimdv 3211 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖) → 𝑥 ∈ dom 𝐹)) |
58 | 35, 57 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → 𝑥 ∈ dom 𝐹) |
59 | 28, 30, 58 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
60 | 27, 59 | pm2.61dan 809 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) → 𝑥 ∈ dom 𝐹) |
61 | 5, 25, 60 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → 𝑥 ∈ dom 𝐹) |
62 | 4, 61 | ffvelrnd 6944 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → (𝐹‘𝑥) ∈ ℝ) |
63 | 62 | recnd 10934 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) → (𝐹‘𝑥) ∈ ℂ) |
64 | 63 | abscld 15076 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) →
(abs‘(𝐹‘𝑥)) ∈
ℝ) |
65 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = (ran 𝑄 ∩ dom 𝐹)) |
66 | | fzfid 13621 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
67 | | rnffi 42600 |
. . . . . . . . . 10
⊢ ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin) |
68 | 7, 66, 67 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑄 ∈ Fin) |
69 | | infi 8972 |
. . . . . . . . 9
⊢ (ran
𝑄 ∈ Fin → (ran
𝑄 ∩ dom 𝐹) ∈ Fin) |
70 | 68, 69 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ Fin) |
71 | 70 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → (ran 𝑄 ∩ dom 𝐹) ∈ Fin) |
72 | 65, 71 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 ∈ Fin) |
73 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥 ∈ 𝑤) → 𝜑) |
74 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥 ∈ 𝑤) → 𝑥 ∈ 𝑤) |
75 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥 ∈ 𝑤) → 𝑤 = (ran 𝑄 ∩ dom 𝐹)) |
76 | 74, 75 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥 ∈ 𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) |
77 | 76 | adantll 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥 ∈ 𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) |
78 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝐹:dom 𝐹⟶ℝ) |
79 | 26 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
80 | 78, 79 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹‘𝑥) ∈ ℝ) |
81 | 80 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹‘𝑥) ∈ ℂ) |
82 | 81 | abscld 15076 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (abs‘(𝐹‘𝑥)) ∈ ℝ) |
83 | 73, 77, 82 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥 ∈ 𝑤) → (abs‘(𝐹‘𝑥)) ∈ ℝ) |
84 | 83 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ∈ ℝ) |
85 | | fimaxre3 11851 |
. . . . . 6
⊢ ((𝑤 ∈ Fin ∧ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
86 | 72, 84, 85 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
87 | 86 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
88 | | simpll 763 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝜑) |
89 | | neqne 2950 |
. . . . . . 7
⊢ (¬
𝑤 = (ran 𝑄 ∩ dom 𝐹) → 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) |
90 | | elprn1 43064 |
. . . . . . 7
⊢ ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} ∧ 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ∪ ran 𝐼) |
91 | 89, 90 | sylan2 592 |
. . . . . 6
⊢ ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ∪ ran 𝐼) |
92 | 91 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ∪ ran 𝐼) |
93 | | fzofi 13622 |
. . . . . . . 8
⊢
(0..^𝑀) ∈
Fin |
94 | 15 | rnmptfi 42596 |
. . . . . . . 8
⊢
((0..^𝑀) ∈ Fin
→ ran 𝐼 ∈
Fin) |
95 | 93, 94 | ax-mp 5 |
. . . . . . 7
⊢ ran 𝐼 ∈ Fin |
96 | 95 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = ∪ ran 𝐼) → ran 𝐼 ∈ Fin) |
97 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → 𝐹:dom 𝐹⟶ℝ) |
98 | 97, 58 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → (𝐹‘𝑥) ∈ ℝ) |
99 | 98 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ ran
𝐼) → (𝐹‘𝑥) ∈ ℂ) |
100 | 99 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 = ∪ ran 𝐼) ∧ 𝑥 ∈ ∪ ran
𝐼) → (𝐹‘𝑥) ∈ ℂ) |
101 | 100 | abscld 15076 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 = ∪ ran 𝐼) ∧ 𝑥 ∈ ∪ ran
𝐼) → (abs‘(𝐹‘𝑥)) ∈ ℝ) |
102 | 37, 15 | fnmpti 6560 |
. . . . . . . . . . 11
⊢ 𝐼 Fn (0..^𝑀) |
103 | | fvelrnb 6812 |
. . . . . . . . . . 11
⊢ (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼‘𝑖) = 𝑡)) |
104 | 102, 103 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼‘𝑖) = 𝑡) |
105 | 104 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼‘𝑖) = 𝑡) |
106 | 105 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼‘𝑖) = 𝑡) |
107 | 7 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
108 | | elfzofz 13331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
109 | 108 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
110 | 107, 109 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
111 | | fzofzp1 13412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
112 | 111 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
113 | 107, 112 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
114 | | fourierdlem71.l |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
115 | | fourierdlem71.r |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
116 | 110, 113,
44, 114, 115 | cncfioobd 43328 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏) |
117 | 116 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏) |
118 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹‘𝑥)) |
119 | 118 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐹‘𝑥))) |
120 | 119 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
121 | 120 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
122 | 121 | ralbidva 3119 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
123 | 122 | rexbidv 3225 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
124 | 123 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
125 | 37, 42 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑀) → (𝐼‘𝑖) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
126 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼‘𝑖) = 𝑡 → (𝐼‘𝑖) = 𝑡) |
127 | 125, 126 | sylan9req 2800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡) |
128 | 127 | 3adant1 1128 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡) |
129 | 128 | raleqdv 3339 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → (∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
130 | 129 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
131 | 124, 130 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
132 | 117, 131 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐼‘𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏) |
133 | 132 | 3exp 1117 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼‘𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏))) |
134 | 133 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼‘𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏))) |
135 | 134 | rexlimdv 3211 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼‘𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏)) |
136 | 106, 135 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏) |
137 | 136 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 = ∪ ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑡 (abs‘(𝐹‘𝑥)) ≤ 𝑏) |
138 | | eqimss 3973 |
. . . . . . 7
⊢ (𝑤 = ∪
ran 𝐼 → 𝑤 ⊆ ∪ ran 𝐼) |
139 | 138 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 = ∪ ran 𝐼) → 𝑤 ⊆ ∪ ran
𝐼) |
140 | 96, 101, 137, 139 | ssfiunibd 42738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 = ∪ ran 𝐼) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
141 | 88, 92, 140 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
142 | 87, 141 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼}) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑤 (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
143 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄) |
144 | | elinel2 4126 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹) |
145 | 144 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ dom 𝐹) |
146 | 143, 145 | elind 4124 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) |
147 | | elun1 4106 |
. . . . . . . 8
⊢ (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
148 | 146, 147 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
149 | | fourierdlem71.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
150 | 149 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑀 ∈ ℕ) |
151 | 7 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ) |
152 | | elinel1 4125 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ (𝐴[,]𝐵)) |
153 | 152 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ (𝐴[,]𝐵)) |
154 | | fourierdlem71.q0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
155 | 154 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
156 | 155 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐴 = (𝑄‘0)) |
157 | | fourierdlem71.10 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
158 | 157 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 = (𝑄‘𝑀)) |
159 | 158 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐵 = (𝑄‘𝑀)) |
160 | 156, 159 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄‘𝑀))) |
161 | 153, 160 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
162 | 161 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
163 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ¬ 𝑥 ∈ ran 𝑄) |
164 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑄‘𝑘) = (𝑄‘𝑗)) |
165 | 164 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝑄‘𝑘) < 𝑥 ↔ (𝑄‘𝑗) < 𝑥)) |
166 | 165 | cbvrabv 3416 |
. . . . . . . . . . . 12
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < 𝑥} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < 𝑥} |
167 | 166 | supeq1i 9136 |
. . . . . . . . . . 11
⊢
sup({𝑘 ∈
(0..^𝑀) ∣ (𝑄‘𝑘) < 𝑥}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < 𝑥}, ℝ, < ) |
168 | 150, 151,
162, 163, 167 | fourierdlem25 43563 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
169 | 39 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) → 𝑖 ∈ (0..^𝑀)) |
170 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) → 𝑥 ∈ (𝐼‘𝑖)) |
171 | 169, 125 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) → (𝐼‘𝑖) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
172 | 170, 171 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
173 | 169, 172 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
174 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0..^𝑀)) |
175 | 174, 38 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ dom 𝐼) |
176 | 175 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑖 ∈ dom 𝐼) |
177 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
178 | 125 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑀) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼‘𝑖)) |
179 | 178 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼‘𝑖)) |
180 | 177, 179 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ (𝐼‘𝑖)) |
181 | 176, 180 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) → (𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖))) |
182 | 173, 181 | impbida 797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ (𝐼‘𝑖)) ↔ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
183 | 182 | rexbidv2 3223 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
184 | 183 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
185 | 168, 184 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼‘𝑖)) |
186 | 185, 33 | sylibr 233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ∪ ran
𝐼) |
187 | | elun2 4107 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ ran 𝐼 → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
188 | 186, 187 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
189 | 148, 188 | pm2.61dan 809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
190 | 189 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
191 | | dfss3 3905 |
. . . . 5
⊢ (((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼) ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
192 | 190, 191 | sylibr 233 |
. . . 4
⊢ (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
193 | 13, 21, 23 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ∪ {(ran 𝑄 ∩ dom 𝐹), ∪ ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ∪ ran
𝐼)) |
194 | 192, 193 | sseqtrrd 3958 |
. . 3
⊢ (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ∪ {(ran
𝑄 ∩ dom 𝐹), ∪
ran 𝐼}) |
195 | 2, 64, 142, 194 | ssfiunibd 42738 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) |
196 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
197 | | nfra1 3142 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦 |
198 | 196, 197 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) |
199 | | fourierdlem71.dmf |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
200 | 199 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ℝ) |
201 | | fourierdlem71.b |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ ℝ) |
202 | 201 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐵 ∈ ℝ) |
203 | 202, 200 | resubcld 11333 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐵 − 𝑥) ∈ ℝ) |
204 | | fourierdlem71.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = (𝐵 − 𝐴) |
205 | | fourierdlem71.a |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
206 | 201, 205 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
207 | 204, 206 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ∈ ℝ) |
208 | 207 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑇 ∈ ℝ) |
209 | | fourierdlem71.altb |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 < 𝐵) |
210 | 205, 201 | posdifd 11492 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
211 | 209, 210 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
212 | 211, 204 | breqtrrdi 5112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 𝑇) |
213 | 212 | gt0ne0d 11469 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ≠ 0) |
214 | 213 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑇 ≠ 0) |
215 | 203, 208,
214 | redivcld 11733 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → ((𝐵 − 𝑥) / 𝑇) ∈ ℝ) |
216 | 215 | flcld 13446 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ) |
217 | 216 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℝ) |
218 | 217, 208 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) ∈ ℝ) |
219 | 200, 218 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) |
220 | | fourierdlem71.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
221 | 220 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸‘𝑥) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
222 | 200, 219,
221 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
223 | 222 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘(𝐸‘𝑥)) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
224 | | fvex 6769 |
. . . . . . . . . . . 12
⊢
(⌊‘((𝐵
− 𝑥) / 𝑇)) ∈ V |
225 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ)) |
226 | 225 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) ↔ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ))) |
227 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
228 | 227 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
229 | 228 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
230 | 229 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝐹‘𝑥))) |
231 | 226, 230 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → ((((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) ↔ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)))) |
232 | | fourierdlem71.fxpt |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) |
233 | 224, 231,
232 | vtocl 3488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)) |
234 | 216, 233 | mpdan 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)) |
235 | 223, 234 | eqtr2d 2779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘(𝐸‘𝑥))) |
236 | 235 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘(𝐸‘𝑥)))) |
237 | 236 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘(𝐸‘𝑥)))) |
238 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
239 | 238 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑤))) |
240 | 239 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((abs‘(𝐹‘𝑥)) ≤ 𝑦 ↔ (abs‘(𝐹‘𝑤)) ≤ 𝑦)) |
241 | 240 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦 ↔ ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑤)) ≤ 𝑦) |
242 | 241 | biimpi 215 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦 → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑤)) ≤ 𝑦) |
243 | 242 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑤)) ≤ 𝑦) |
244 | | iocssicc 13098 |
. . . . . . . . . . 11
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
245 | 205 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐴 ∈ ℝ) |
246 | 209 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐴 < 𝐵) |
247 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
248 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐵 − 𝑥) = (𝐵 − 𝑦)) |
249 | 248 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − 𝑦) / 𝑇)) |
250 | 249 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − 𝑦) / 𝑇))) |
251 | 250 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇)) |
252 | 247, 251 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) = (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇))) |
253 | 252 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇))) |
254 | 220, 253 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵 − 𝑦) / 𝑇)) · 𝑇))) |
255 | 245, 202,
246, 204, 254 | fourierdlem4 43542 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
256 | 255, 200 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) ∈ (𝐴(,]𝐵)) |
257 | 244, 256 | sselid 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) ∈ (𝐴[,]𝐵)) |
258 | 228 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹 ↔ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)) |
259 | 226, 258 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (⌊‘((𝐵 − 𝑥) / 𝑇)) → ((((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) ↔ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹))) |
260 | | fourierdlem71.xpt |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) |
261 | 224, 259,
260 | vtocl 3488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵 − 𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹) |
262 | 216, 261 | mpdan 683 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹) |
263 | 222, 262 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) ∈ dom 𝐹) |
264 | 257, 263 | elind 4124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) |
265 | 264 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (𝐸‘𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) |
266 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐸‘𝑥) → (𝐹‘𝑤) = (𝐹‘(𝐸‘𝑥))) |
267 | 266 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐸‘𝑥) → (abs‘(𝐹‘𝑤)) = (abs‘(𝐹‘(𝐸‘𝑥)))) |
268 | 267 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑤 = (𝐸‘𝑥) → ((abs‘(𝐹‘𝑤)) ≤ 𝑦 ↔ (abs‘(𝐹‘(𝐸‘𝑥))) ≤ 𝑦)) |
269 | 268 | rspccva 3551 |
. . . . . . . 8
⊢
((∀𝑤 ∈
((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑤)) ≤ 𝑦 ∧ (𝐸‘𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (abs‘(𝐹‘(𝐸‘𝑥))) ≤ 𝑦) |
270 | 243, 265,
269 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘(𝐸‘𝑥))) ≤ 𝑦) |
271 | 237, 270 | eqbrtrd 5092 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
272 | 271 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) → (𝑥 ∈ dom 𝐹 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
273 | 198, 272 | ralrimi 3139 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦) |
274 | 273 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
275 | 274 | reximdv 3201 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹‘𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
276 | 195, 275 | mpd 15 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦) |