Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem71 Structured version   Visualization version   GIF version

Theorem fourierdlem71 46223
Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem71.dmf (𝜑 → dom 𝐹 ⊆ ℝ)
fourierdlem71.f (𝜑𝐹:dom 𝐹⟶ℝ)
fourierdlem71.a (𝜑𝐴 ∈ ℝ)
fourierdlem71.b (𝜑𝐵 ∈ ℝ)
fourierdlem71.altb (𝜑𝐴 < 𝐵)
fourierdlem71.t 𝑇 = (𝐵𝐴)
fourierdlem71.7 (𝜑𝑀 ∈ ℕ)
fourierdlem71.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem71.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem71.10 (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem71.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem71.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem71.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem71.xpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
fourierdlem71.fxpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem71.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
fourierdlem71.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem71 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑘,𝑥   𝑦,𝐵   𝑖,𝐹,𝑥,𝑘   𝑦,𝐹   𝑖,𝐼,𝑥   𝑦,𝐼   𝑥,𝐿   𝑖,𝑀,𝑥,𝑘   𝑄,𝑖,𝑥,𝑘   𝑦,𝑄   𝑥,𝑅   𝑇,𝑘,𝑥   𝑦,𝑇   𝜑,𝑖,𝑥,𝑘   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘)   𝐵(𝑖)   𝑅(𝑦,𝑖,𝑘)   𝑇(𝑖)   𝐸(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑘)   𝐿(𝑦,𝑖,𝑘)   𝑀(𝑦)

Proof of Theorem fourierdlem71
Dummy variables 𝑤 𝑏 𝑡 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 9208 . . . 4 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin
21a1i 11 . . 3 (𝜑 → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin)
3 fourierdlem71.f . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝐹:dom 𝐹⟶ℝ)
5 simpl 482 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝜑)
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
7 fourierdlem71.q . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
8 ovex 7379 . . . . . . . . . . . . 13 (0...𝑀) ∈ V
98a1i 11 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ V)
107, 9fexd 7161 . . . . . . . . . . 11 (𝜑𝑄 ∈ V)
11 rnexg 7832 . . . . . . . . . . 11 (𝑄 ∈ V → ran 𝑄 ∈ V)
12 inex1g 5255 . . . . . . . . . . 11 (ran 𝑄 ∈ V → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1310, 11, 123syl 18 . . . . . . . . . 10 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (ran 𝑄 ∩ dom 𝐹) ∈ V)
15 fourierdlem71.i . . . . . . . . . . . . . 14 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
16 ovex 7379 . . . . . . . . . . . . . . 15 (0..^𝑀) ∈ V
1716mptex 7157 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ V
1815, 17eqeltri 2827 . . . . . . . . . . . . 13 𝐼 ∈ V
1918rnex 7840 . . . . . . . . . . . 12 ran 𝐼 ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → ran 𝐼 ∈ V)
2120uniexd 7675 . . . . . . . . . 10 (𝜑 ran 𝐼 ∈ V)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ran 𝐼 ∈ V)
23 uniprg 4872 . . . . . . . . 9 (((ran 𝑄 ∩ dom 𝐹) ∈ V ∧ ran 𝐼 ∈ V) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
2414, 22, 23syl2anc 584 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
256, 24eleqtrd 2833 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
26 elinel2 4149 . . . . . . . . 9 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
2726adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
28 simpll 766 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
29 elunnel1 4101 . . . . . . . . . 10 ((𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3029adantll 714 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3115funmpt2 6520 . . . . . . . . . . . . 13 Fun 𝐼
32 elunirn 7185 . . . . . . . . . . . . 13 (Fun 𝐼 → (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖)))
3331, 32ax-mp 5 . . . . . . . . . . . 12 (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3433biimpi 216 . . . . . . . . . . 11 (𝑥 ran 𝐼 → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3534adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
36 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
37 ovex 7379 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
3837, 15dmmpti 6625 . . . . . . . . . . . . . . . . . . 19 dom 𝐼 = (0..^𝑀)
3936, 38eleqtrdi 2841 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
4039adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
4137a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V)
4215fvmpt2 6940 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
44 fourierdlem71.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
45 cncff 24813 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
46 fdm 6660 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4744, 45, 463syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4839, 47sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
49 ssdmres 5961 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5048, 49sylibr 234 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
5143, 50eqsstrd 3964 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ dom 𝐹)
52513adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ dom 𝐹)
53 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ (𝐼𝑖))
5452, 53sseldd 3930 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ dom 𝐹)
55543exp 1119 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5655adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5756rexlimdv 3131 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹))
5835, 57mpd 15 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → 𝑥 ∈ dom 𝐹)
5928, 30, 58syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
6027, 59pm2.61dan 812 . . . . . . 7 ((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) → 𝑥 ∈ dom 𝐹)
615, 25, 60syl2anc 584 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ dom 𝐹)
624, 61ffvelcdmd 7018 . . . . 5 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℝ)
6362recnd 11140 . . . 4 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℂ)
6463abscld 15346 . . 3 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (abs‘(𝐹𝑥)) ∈ ℝ)
65 simpr 484 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
66 fzfid 13880 . . . . . . . . . 10 (𝜑 → (0...𝑀) ∈ Fin)
67 rnffi 45220 . . . . . . . . . 10 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
687, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ Fin)
69 infi 9154 . . . . . . . . 9 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7068, 69syl 17 . . . . . . . 8 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7170adantr 480 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7265, 71eqeltrd 2831 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 ∈ Fin)
73 simpll 766 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝜑)
74 simpr 484 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥𝑤)
75 simpl 482 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
7674, 75eleqtrd 2833 . . . . . . . . 9 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
7776adantll 714 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
783adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝐹:dom 𝐹⟶ℝ)
7926adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
8078, 79ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℝ)
8180recnd 11140 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℂ)
8281abscld 15346 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (abs‘(𝐹𝑥)) ∈ ℝ)
8373, 77, 82syl2anc 584 . . . . . . 7 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → (abs‘(𝐹𝑥)) ∈ ℝ)
8483ralrimiva 3124 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ)
85 fimaxre3 12068 . . . . . 6 ((𝑤 ∈ Fin ∧ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8672, 84, 85syl2anc 584 . . . . 5 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8786adantlr 715 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
88 simpll 766 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
89 neqne 2936 . . . . . . 7 𝑤 = (ran 𝑄 ∩ dom 𝐹) → 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹))
90 elprn1 4601 . . . . . . 7 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9189, 90sylan2 593 . . . . . 6 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9291adantll 714 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
93 fzofi 13881 . . . . . . . 8 (0..^𝑀) ∈ Fin
9415rnmptfi 45216 . . . . . . . 8 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
9593, 94ax-mp 5 . . . . . . 7 ran 𝐼 ∈ Fin
9695a1i 11 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
973adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → 𝐹:dom 𝐹⟶ℝ)
9897, 58ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℝ)
9998recnd 11140 . . . . . . . 8 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
10099adantlr 715 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
101100abscld 15346 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (abs‘(𝐹𝑥)) ∈ ℝ)
10237, 15fnmpti 6624 . . . . . . . . . . 11 𝐼 Fn (0..^𝑀)
103 fvelrnb 6882 . . . . . . . . . . 11 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
104102, 103ax-mp 5 . . . . . . . . . 10 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
105104biimpi 216 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
106105adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1077adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 13575 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111 fzofzp1 13664 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
112111adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
113107, 112ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
114 fourierdlem71.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
115 fourierdlem71.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
116110, 113, 44, 114, 115cncfioobd 45943 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
1171163adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
118 fvres 6841 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
119118fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐹𝑥)))
120119breq1d 5099 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
121120adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
122121ralbidva 3153 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
123122rexbidv 3156 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
1241233adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
12537, 42mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
126 id 22 . . . . . . . . . . . . . . . . 17 ((𝐼𝑖) = 𝑡 → (𝐼𝑖) = 𝑡)
127125, 126sylan9req 2787 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
1281273adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
129128raleqdv 3292 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
130129rexbidv 3156 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
131124, 130bitrd 279 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
132117, 131mpbid 232 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
1331323exp 1119 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
134133adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
135134rexlimdv 3131 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
136106, 135mpd 15 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
137136adantlr 715 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
138 eqimss 3988 . . . . . . 7 (𝑤 = ran 𝐼𝑤 ran 𝐼)
139138adantl 481 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
14096, 101, 137, 139ssfiunibd 45358 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14188, 92, 140syl2anc 584 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14287, 141pm2.61dan 812 . . 3 ((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
143 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
144 elinel2 4149 . . . . . . . . . 10 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
145144ad2antlr 727 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ dom 𝐹)
146143, 145elind 4147 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
147 elun1 4129 . . . . . . . 8 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
148146, 147syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
149 fourierdlem71.7 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
150149ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1517ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
152 elinel1 4148 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ (𝐴[,]𝐵))
153152adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ (𝐴[,]𝐵))
154 fourierdlem71.q0 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄‘0) = 𝐴)
155154eqcomd 2737 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (𝑄‘0))
156155adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐴 = (𝑄‘0))
157 fourierdlem71.10 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄𝑀) = 𝐵)
158157eqcomd 2737 . . . . . . . . . . . . . . 15 (𝜑𝐵 = (𝑄𝑀))
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐵 = (𝑄𝑀))
160156, 159oveq12d 7364 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
161153, 160eleqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
162161adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
163 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ¬ 𝑥 ∈ ran 𝑄)
164 fveq2 6822 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
165164breq1d 5099 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑥 ↔ (𝑄𝑗) < 𝑥))
166165cbvrabv 3405 . . . . . . . . . . . 12 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}
167166supeq1i 9331 . . . . . . . . . . 11 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}, ℝ, < )
168150, 151, 162, 163, 167fourierdlem25 46178 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
16939ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑖 ∈ (0..^𝑀))
170 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ (𝐼𝑖))
171169, 125syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172170, 171eleqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
173169, 172jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
174 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0..^𝑀))
175174, 38eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ dom 𝐼)
176175ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑖 ∈ dom 𝐼)
177 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
178125eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
179178ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
180177, 179eleqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ (𝐼𝑖))
181176, 180jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)))
182173, 181impbida 800 . . . . . . . . . . . 12 (𝜑 → ((𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) ↔ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
183182rexbidv2 3152 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
184183ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
185168, 184mpbird 257 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
186185, 33sylibr 234 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ran 𝐼)
187 elun2 4130 . . . . . . . 8 (𝑥 ran 𝐼𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
188186, 187syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
189148, 188pm2.61dan 812 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
190189ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
191 dfss3 3918 . . . . 5 (((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
192190, 191sylibr 234 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
19313, 21, 23syl2anc 584 . . . 4 (𝜑 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
194192, 193sseqtrrd 3967 . . 3 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
1952, 64, 142, 194ssfiunibd 45358 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
196 nfv 1915 . . . . . 6 𝑥𝜑
197 nfra1 3256 . . . . . 6 𝑥𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦
198196, 197nfan 1900 . . . . 5 𝑥(𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
199 fourierdlem71.dmf . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℝ)
200199sselda 3929 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
201 fourierdlem71.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
202201adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
203202, 200resubcld 11545 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → (𝐵𝑥) ∈ ℝ)
204 fourierdlem71.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝐵𝐴)
205 fourierdlem71.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
206201, 205resubcld 11545 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝐴) ∈ ℝ)
207204, 206eqeltrid 2835 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
208207adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ∈ ℝ)
209 fourierdlem71.altb . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 < 𝐵)
210205, 201posdifd 11704 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
211209, 210mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (𝐵𝐴))
212211, 204breqtrrdi 5131 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑇)
213212gt0ne0d 11681 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ≠ 0)
214213adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ≠ 0)
215203, 208, 214redivcld 11949 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
216215flcld 13702 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
217216zred 12577 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
218217, 208remulcld 11142 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
219200, 218readdcld 11141 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
220 fourierdlem71.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
221220fvmpt2 6940 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
222200, 219, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
223222fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝐸𝑥)) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
224 fvex 6835 . . . . . . . . . . . 12 (⌊‘((𝐵𝑥) / 𝑇)) ∈ V
225 eleq1 2819 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ))
226225anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) ↔ ((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)))
227 oveq1 7353 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
228227oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
229228fveq2d 6826 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
230229eqeq1d 2733 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
231226, 230imbi12d 344 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
232 fourierdlem71.fxpt . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
233224, 231, 232vtocl 3511 . . . . . . . . . . 11 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
234216, 233mpdan 687 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
235223, 234eqtr2d 2767 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹‘(𝐸𝑥)))
236235fveq2d 6826 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
237236adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
238 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
239238fveq2d 6826 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑤)))
240239breq1d 5099 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((abs‘(𝐹𝑥)) ≤ 𝑦 ↔ (abs‘(𝐹𝑤)) ≤ 𝑦))
241240cbvralvw 3210 . . . . . . . . . 10 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 ↔ ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
242241biimpi 216 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
243242ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
244 iocssicc 13337 . . . . . . . . . . 11 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
245205adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
246209adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 < 𝐵)
247 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦𝑥 = 𝑦)
248 oveq2 7354 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
249248oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑦) / 𝑇))
250249fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑦) / 𝑇)))
251250oveq1d 7361 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))
252247, 251oveq12d 7364 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
253252cbvmptv 5193 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
254220, 253eqtri 2754 . . . . . . . . . . . . 13 𝐸 = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
255245, 202, 246, 204, 254fourierdlem4 46157 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝐸:ℝ⟶(𝐴(,]𝐵))
256255, 200ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
257244, 256sselid 3927 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴[,]𝐵))
258228eleq1d 2816 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹 ↔ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹))
259226, 258imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)))
260 fourierdlem71.xpt . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
261224, 259, 260vtocl 3511 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
262216, 261mpdan 687 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
263222, 262eqeltrd 2831 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ dom 𝐹)
264257, 263elind 4147 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
265264adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
266 fveq2 6822 . . . . . . . . . . 11 (𝑤 = (𝐸𝑥) → (𝐹𝑤) = (𝐹‘(𝐸𝑥)))
267266fveq2d 6826 . . . . . . . . . 10 (𝑤 = (𝐸𝑥) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝐸𝑥))))
268267breq1d 5099 . . . . . . . . 9 (𝑤 = (𝐸𝑥) → ((abs‘(𝐹𝑤)) ≤ 𝑦 ↔ (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦))
269268rspccva 3571 . . . . . . . 8 ((∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦 ∧ (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
270243, 265, 269syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
271237, 270eqbrtrd 5111 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) ≤ 𝑦)
272271ex 412 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → (𝑥 ∈ dom 𝐹 → (abs‘(𝐹𝑥)) ≤ 𝑦))
273198, 272ralrimi 3230 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
274273ex 412 . . 3 (𝜑 → (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
275274reximdv 3147 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
276195, 275mpd 15 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  cin 3896  wss 3897  {cpr 4575   cuni 4856   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  cz 12468  (,)cioo 13245  (,]cioc 13246  [,]cicc 13248  ...cfz 13407  ..^cfzo 13554  cfl 13694  abscabs 15141  cnccncf 24796   lim climc 25790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794
This theorem is referenced by:  fourierdlem94  46246  fourierdlem113  46265
  Copyright terms: Public domain W3C validator