Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem71 Structured version   Visualization version   GIF version

Theorem fourierdlem71 46173
Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem71.dmf (𝜑 → dom 𝐹 ⊆ ℝ)
fourierdlem71.f (𝜑𝐹:dom 𝐹⟶ℝ)
fourierdlem71.a (𝜑𝐴 ∈ ℝ)
fourierdlem71.b (𝜑𝐵 ∈ ℝ)
fourierdlem71.altb (𝜑𝐴 < 𝐵)
fourierdlem71.t 𝑇 = (𝐵𝐴)
fourierdlem71.7 (𝜑𝑀 ∈ ℕ)
fourierdlem71.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem71.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem71.10 (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem71.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem71.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem71.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem71.xpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
fourierdlem71.fxpt (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem71.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
fourierdlem71.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem71 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝐵,𝑘,𝑥   𝑦,𝐵   𝑖,𝐹,𝑥,𝑘   𝑦,𝐹   𝑖,𝐼,𝑥   𝑦,𝐼   𝑥,𝐿   𝑖,𝑀,𝑥,𝑘   𝑄,𝑖,𝑥,𝑘   𝑦,𝑄   𝑥,𝑅   𝑇,𝑘,𝑥   𝑦,𝑇   𝜑,𝑖,𝑥,𝑘   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘)   𝐵(𝑖)   𝑅(𝑦,𝑖,𝑘)   𝑇(𝑖)   𝐸(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑘)   𝐿(𝑦,𝑖,𝑘)   𝑀(𝑦)

Proof of Theorem fourierdlem71
Dummy variables 𝑤 𝑏 𝑡 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 9340 . . . 4 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin
21a1i 11 . . 3 (𝜑 → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∈ Fin)
3 fourierdlem71.f . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝐹:dom 𝐹⟶ℝ)
5 simpl 482 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝜑)
6 simpr 484 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
7 fourierdlem71.q . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
8 ovex 7443 . . . . . . . . . . . . 13 (0...𝑀) ∈ V
98a1i 11 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ V)
107, 9fexd 7224 . . . . . . . . . . 11 (𝜑𝑄 ∈ V)
11 rnexg 7903 . . . . . . . . . . 11 (𝑄 ∈ V → ran 𝑄 ∈ V)
12 inex1g 5294 . . . . . . . . . . 11 (ran 𝑄 ∈ V → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1310, 11, 123syl 18 . . . . . . . . . 10 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ V)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (ran 𝑄 ∩ dom 𝐹) ∈ V)
15 fourierdlem71.i . . . . . . . . . . . . . 14 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
16 ovex 7443 . . . . . . . . . . . . . . 15 (0..^𝑀) ∈ V
1716mptex 7220 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ V
1815, 17eqeltri 2831 . . . . . . . . . . . . 13 𝐼 ∈ V
1918rnex 7911 . . . . . . . . . . . 12 ran 𝐼 ∈ V
2019a1i 11 . . . . . . . . . . 11 (𝜑 → ran 𝐼 ∈ V)
2120uniexd 7741 . . . . . . . . . 10 (𝜑 ran 𝐼 ∈ V)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ran 𝐼 ∈ V)
23 uniprg 4904 . . . . . . . . 9 (((ran 𝑄 ∩ dom 𝐹) ∈ V ∧ ran 𝐼 ∈ V) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
2414, 22, 23syl2anc 584 . . . . . . . 8 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
256, 24eleqtrd 2837 . . . . . . 7 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
26 elinel2 4182 . . . . . . . . 9 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
2726adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
28 simpll 766 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
29 elunnel1 4134 . . . . . . . . . 10 ((𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3029adantll 714 . . . . . . . . 9 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ran 𝐼)
3115funmpt2 6580 . . . . . . . . . . . . 13 Fun 𝐼
32 elunirn 7248 . . . . . . . . . . . . 13 (Fun 𝐼 → (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖)))
3331, 32ax-mp 5 . . . . . . . . . . . 12 (𝑥 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3433biimpi 216 . . . . . . . . . . 11 (𝑥 ran 𝐼 → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
3534adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
36 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
37 ovex 7443 . . . . . . . . . . . . . . . . . . . 20 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
3837, 15dmmpti 6687 . . . . . . . . . . . . . . . . . . 19 dom 𝐼 = (0..^𝑀)
3936, 38eleqtrdi 2845 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
4039adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
4137a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V)
4215fvmpt2 7002 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
44 fourierdlem71.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
45 cncff 24842 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
46 fdm 6720 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4744, 45, 463syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
4839, 47sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
49 ssdmres 6005 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5048, 49sylibr 234 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
5143, 50eqsstrd 3998 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ dom 𝐹)
52513adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ dom 𝐹)
53 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ (𝐼𝑖))
5452, 53sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) → 𝑥 ∈ dom 𝐹)
55543exp 1119 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5655adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹)))
5756rexlimdv 3140 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) → 𝑥 ∈ dom 𝐹))
5835, 57mpd 15 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → 𝑥 ∈ dom 𝐹)
5928, 30, 58syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) ∧ ¬ 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
6027, 59pm2.61dan 812 . . . . . . 7 ((𝜑𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼)) → 𝑥 ∈ dom 𝐹)
615, 25, 60syl2anc 584 . . . . . 6 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → 𝑥 ∈ dom 𝐹)
624, 61ffvelcdmd 7080 . . . . 5 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℝ)
6362recnd 11268 . . . 4 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (𝐹𝑥) ∈ ℂ)
6463abscld 15460 . . 3 ((𝜑𝑥 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → (abs‘(𝐹𝑥)) ∈ ℝ)
65 simpr 484 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
66 fzfid 13996 . . . . . . . . . 10 (𝜑 → (0...𝑀) ∈ Fin)
67 rnffi 45166 . . . . . . . . . 10 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
687, 66, 67syl2anc 584 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ Fin)
69 infi 9279 . . . . . . . . 9 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7068, 69syl 17 . . . . . . . 8 (𝜑 → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7170adantr 480 . . . . . . 7 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → (ran 𝑄 ∩ dom 𝐹) ∈ Fin)
7265, 71eqeltrd 2835 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 ∈ Fin)
73 simpll 766 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝜑)
74 simpr 484 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥𝑤)
75 simpl 482 . . . . . . . . . 10 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑤 = (ran 𝑄 ∩ dom 𝐹))
7674, 75eleqtrd 2837 . . . . . . . . 9 ((𝑤 = (ran 𝑄 ∩ dom 𝐹) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
7776adantll 714 . . . . . . . 8 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
783adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝐹:dom 𝐹⟶ℝ)
7926adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
8078, 79ffvelcdmd 7080 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℝ)
8180recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (𝐹𝑥) ∈ ℂ)
8281abscld 15460 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝑄 ∩ dom 𝐹)) → (abs‘(𝐹𝑥)) ∈ ℝ)
8373, 77, 82syl2anc 584 . . . . . . 7 (((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) ∧ 𝑥𝑤) → (abs‘(𝐹𝑥)) ∈ ℝ)
8483ralrimiva 3133 . . . . . 6 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ)
85 fimaxre3 12193 . . . . . 6 ((𝑤 ∈ Fin ∧ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8672, 84, 85syl2anc 584 . . . . 5 ((𝜑𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
8786adantlr 715 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
88 simpll 766 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝜑)
89 neqne 2941 . . . . . . 7 𝑤 = (ran 𝑄 ∩ dom 𝐹) → 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹))
90 elprn1 45629 . . . . . . 7 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ 𝑤 ≠ (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9189, 90sylan2 593 . . . . . 6 ((𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
9291adantll 714 . . . . 5 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → 𝑤 = ran 𝐼)
93 fzofi 13997 . . . . . . . 8 (0..^𝑀) ∈ Fin
9415rnmptfi 45162 . . . . . . . 8 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
9593, 94ax-mp 5 . . . . . . 7 ran 𝐼 ∈ Fin
9695a1i 11 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
973adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ran 𝐼) → 𝐹:dom 𝐹⟶ℝ)
9897, 58ffvelcdmd 7080 . . . . . . . . 9 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℝ)
9998recnd 11268 . . . . . . . 8 ((𝜑𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
10099adantlr 715 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (𝐹𝑥) ∈ ℂ)
101100abscld 15460 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑥 ran 𝐼) → (abs‘(𝐹𝑥)) ∈ ℝ)
10237, 15fnmpti 6686 . . . . . . . . . . 11 𝐼 Fn (0..^𝑀)
103 fvelrnb 6944 . . . . . . . . . . 11 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
104102, 103ax-mp 5 . . . . . . . . . 10 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
105104biimpi 216 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
106105adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1077adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
108 elfzofz 13697 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
109108adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
110107, 109ffvelcdmd 7080 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
111 fzofzp1 13785 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
112111adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
113107, 112ffvelcdmd 7080 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
114 fourierdlem71.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
115 fourierdlem71.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
116110, 113, 44, 114, 115cncfioobd 45893 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
1171163adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏)
118 fvres 6900 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
119118fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐹𝑥)))
120119breq1d 5134 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
121120adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ 𝑏))
122121ralbidva 3162 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
123122rexbidv 3165 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
1241233adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏))
12537, 42mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
126 id 22 . . . . . . . . . . . . . . . . 17 ((𝐼𝑖) = 𝑡 → (𝐼𝑖) = 𝑡)
127125, 126sylan9req 2792 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
1281273adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
129128raleqdv 3309 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
130129rexbidv 3165 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
131124, 130bitrd 279 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
132117, 131mpbid 232 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
1331323exp 1119 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
134133adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)))
135134rexlimdv 3140 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏))
136106, 135mpd 15 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
137136adantlr 715 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑥𝑡 (abs‘(𝐹𝑥)) ≤ 𝑏)
138 eqimss 4022 . . . . . . 7 (𝑤 = ran 𝐼𝑤 ran 𝐼)
139138adantl 481 . . . . . 6 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
14096, 101, 137, 139ssfiunibd 45305 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14188, 92, 140syl2anc 584 . . . 4 (((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) ∧ ¬ 𝑤 = (ran 𝑄 ∩ dom 𝐹)) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
14287, 141pm2.61dan 812 . . 3 ((𝜑𝑤 ∈ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼}) → ∃𝑦 ∈ ℝ ∀𝑥𝑤 (abs‘(𝐹𝑥)) ≤ 𝑦)
143 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
144 elinel2 4182 . . . . . . . . . 10 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
145144ad2antlr 727 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ dom 𝐹)
146143, 145elind 4180 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ (ran 𝑄 ∩ dom 𝐹))
147 elun1 4162 . . . . . . . 8 (𝑥 ∈ (ran 𝑄 ∩ dom 𝐹) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
148146, 147syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
149 fourierdlem71.7 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
150149ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1517ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
152 elinel1 4181 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹) → 𝑥 ∈ (𝐴[,]𝐵))
153152adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ (𝐴[,]𝐵))
154 fourierdlem71.q0 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄‘0) = 𝐴)
155154eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (𝑄‘0))
156155adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐴 = (𝑄‘0))
157 fourierdlem71.10 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄𝑀) = 𝐵)
158157eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑𝐵 = (𝑄𝑀))
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝐵 = (𝑄𝑀))
160156, 159oveq12d 7428 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
161153, 160eleqtrd 2837 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
162161adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
163 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ¬ 𝑥 ∈ ran 𝑄)
164 fveq2 6881 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
165164breq1d 5134 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑥 ↔ (𝑄𝑗) < 𝑥))
166165cbvrabv 3431 . . . . . . . . . . . 12 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}
167166supeq1i 9464 . . . . . . . . . . 11 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑥}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑥}, ℝ, < )
168150, 151, 162, 163, 167fourierdlem25 46128 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
16939ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑖 ∈ (0..^𝑀))
170 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ (𝐼𝑖))
171169, 125syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
172170, 171eleqtrd 2837 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
173169, 172jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖))) → (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
174 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0..^𝑀))
175174, 38eleqtrrdi 2846 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ dom 𝐼)
176175ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑖 ∈ dom 𝐼)
177 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
178125eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
179178ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
180177, 179eleqtrd 2837 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ (𝐼𝑖))
181176, 180jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)))
182173, 181impbida 800 . . . . . . . . . . . 12 (𝜑 → ((𝑖 ∈ dom 𝐼𝑥 ∈ (𝐼𝑖)) ↔ (𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
183182rexbidv2 3161 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
184183ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → (∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
185168, 184mpbird 257 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑥 ∈ (𝐼𝑖))
186185, 33sylibr 234 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ran 𝐼)
187 elun2 4163 . . . . . . . 8 (𝑥 ran 𝐼𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
188186, 187syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) ∧ ¬ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
189148, 188pm2.61dan 812 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → 𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
190189ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
191 dfss3 3952 . . . . 5 (((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼) ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)𝑥 ∈ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
192190, 191sylibr 234 . . . 4 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
19313, 21, 23syl2anc 584 . . . 4 (𝜑 {(ran 𝑄 ∩ dom 𝐹), ran 𝐼} = ((ran 𝑄 ∩ dom 𝐹) ∪ ran 𝐼))
194192, 193sseqtrrd 4001 . . 3 (𝜑 → ((𝐴[,]𝐵) ∩ dom 𝐹) ⊆ {(ran 𝑄 ∩ dom 𝐹), ran 𝐼})
1952, 64, 142, 194ssfiunibd 45305 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
196 nfv 1914 . . . . . 6 𝑥𝜑
197 nfra1 3270 . . . . . 6 𝑥𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦
198196, 197nfan 1899 . . . . 5 𝑥(𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦)
199 fourierdlem71.dmf . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ⊆ ℝ)
200199sselda 3963 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
201 fourierdlem71.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
202201adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
203202, 200resubcld 11670 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → (𝐵𝑥) ∈ ℝ)
204 fourierdlem71.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝐵𝐴)
205 fourierdlem71.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
206201, 205resubcld 11670 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝐴) ∈ ℝ)
207204, 206eqeltrid 2839 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
208207adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ∈ ℝ)
209 fourierdlem71.altb . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 < 𝐵)
210205, 201posdifd 11829 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
211209, 210mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < (𝐵𝐴))
212211, 204breqtrrdi 5166 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑇)
213212gt0ne0d 11806 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ≠ 0)
214213adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ dom 𝐹) → 𝑇 ≠ 0)
215203, 208, 214redivcld 12074 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
216215flcld 13820 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
217216zred 12702 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ dom 𝐹) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
218217, 208remulcld 11270 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
219200, 218readdcld 11269 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
220 fourierdlem71.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
221220fvmpt2 7002 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
222200, 219, 221syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
223222fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝐸𝑥)) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
224 fvex 6894 . . . . . . . . . . . 12 (⌊‘((𝐵𝑥) / 𝑇)) ∈ V
225 eleq1 2823 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ))
226225anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) ↔ ((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)))
227 oveq1 7417 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
228227oveq2d 7426 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
229228fveq2d 6885 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
230229eqeq1d 2738 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
231226, 230imbi12d 344 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
232 fourierdlem71.fxpt . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
233224, 231, 232vtocl 3542 . . . . . . . . . . 11 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
234216, 233mpdan 687 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝐹𝑥))
235223, 234eqtr2d 2772 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹‘(𝐸𝑥)))
236235fveq2d 6885 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
237236adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐸𝑥))))
238 fveq2 6881 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
239238fveq2d 6885 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑤)))
240239breq1d 5134 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((abs‘(𝐹𝑥)) ≤ 𝑦 ↔ (abs‘(𝐹𝑤)) ≤ 𝑦))
241240cbvralvw 3224 . . . . . . . . . 10 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 ↔ ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
242241biimpi 216 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
243242ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → ∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦)
244 iocssicc 13459 . . . . . . . . . . 11 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
245205adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
246209adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐹) → 𝐴 < 𝐵)
247 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦𝑥 = 𝑦)
248 oveq2 7418 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
249248oveq1d 7425 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑦) / 𝑇))
250249fveq2d 6885 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑦) / 𝑇)))
251250oveq1d 7425 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇))
252247, 251oveq12d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
253252cbvmptv 5230 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))) = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
254220, 253eqtri 2759 . . . . . . . . . . . . 13 𝐸 = (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((𝐵𝑦) / 𝑇)) · 𝑇)))
255245, 202, 246, 204, 254fourierdlem4 46107 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐹) → 𝐸:ℝ⟶(𝐴(,]𝐵))
256255, 200ffvelcdmd 7080 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
257244, 256sselid 3961 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ (𝐴[,]𝐵))
258228eleq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹 ↔ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹))
259226, 258imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑥) / 𝑇)) → ((((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) ↔ (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)))
260 fourierdlem71.xpt . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹)
261224, 259, 260vtocl 3542 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐹) ∧ (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
262216, 261mpdan 687 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ dom 𝐹)
263222, 262eqeltrd 2835 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ dom 𝐹)
264257, 263elind 4180 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
265264adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹))
266 fveq2 6881 . . . . . . . . . . 11 (𝑤 = (𝐸𝑥) → (𝐹𝑤) = (𝐹‘(𝐸𝑥)))
267266fveq2d 6885 . . . . . . . . . 10 (𝑤 = (𝐸𝑥) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝐸𝑥))))
268267breq1d 5134 . . . . . . . . 9 (𝑤 = (𝐸𝑥) → ((abs‘(𝐹𝑤)) ≤ 𝑦 ↔ (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦))
269268rspccva 3605 . . . . . . . 8 ((∀𝑤 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑤)) ≤ 𝑦 ∧ (𝐸𝑥) ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
270243, 265, 269syl2anc 584 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹‘(𝐸𝑥))) ≤ 𝑦)
271237, 270eqbrtrd 5146 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom 𝐹) → (abs‘(𝐹𝑥)) ≤ 𝑦)
272271ex 412 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → (𝑥 ∈ dom 𝐹 → (abs‘(𝐹𝑥)) ≤ 𝑦))
273198, 272ralrimi 3244 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
274273ex 412 . . 3 (𝜑 → (∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
275274reximdv 3156 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝐴[,]𝐵) ∩ dom 𝐹)(abs‘(𝐹𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦))
276195, 275mpd 15 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹𝑥)) ≤ 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cun 3929  cin 3930  wss 3931  {cpr 4608   cuni 4888   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cz 12593  (,)cioo 13367  (,]cioc 13368  [,]cicc 13370  ...cfz 13529  ..^cfzo 13676  cfl 13812  abscabs 15258  cnccncf 24825   lim climc 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824
This theorem is referenced by:  fourierdlem94  46196  fourierdlem113  46215
  Copyright terms: Public domain W3C validator