MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpw Structured version   Visualization version   GIF version

Theorem eldifpw 7465
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
eldifpw ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))

Proof of Theorem eldifpw
StepHypRef Expression
1 elpwi 4521 . . . 4 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 unss1 4131 . . . . 5 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 eldifpw.1 . . . . . . 7 𝐶 ∈ V
4 unexg 7447 . . . . . . 7 ((𝐴 ∈ 𝒫 𝐵𝐶 ∈ V) → (𝐴𝐶) ∈ V)
53, 4mpan2 690 . . . . . 6 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
6 elpwg 4515 . . . . . 6 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
75, 6syl 17 . . . . 5 (𝐴 ∈ 𝒫 𝐵 → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
82, 7syl5ibr 249 . . . 4 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶)))
91, 8mpd 15 . . 3 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶))
10 elpwi 4521 . . . . 5 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ⊆ 𝐵)
1110unssbd 4140 . . . 4 ((𝐴𝐶) ∈ 𝒫 𝐵𝐶𝐵)
1211con3i 157 . . 3 𝐶𝐵 → ¬ (𝐴𝐶) ∈ 𝒫 𝐵)
139, 12anim12i 615 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
14 eldif 3920 . 2 ((𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
1513, 14sylibr 237 1 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2115  Vcvv 3471  cdif 3907  cun 3908  wss 3910  𝒫 cpw 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-pw 4514  df-sn 4541  df-pr 4543  df-uni 4812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator