Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifpw | Structured version Visualization version GIF version |
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eldifpw | ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4542 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | unss1 4113 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
3 | eldifpw.1 | . . . . . . 7 ⊢ 𝐶 ∈ V | |
4 | unexg 7599 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ∪ 𝐶) ∈ V) | |
5 | 3, 4 | mpan2 688 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ V) |
6 | elpwg 4536 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐶) ∈ V → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝐵 → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) |
8 | 2, 7 | syl5ibr 245 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶))) |
9 | 1, 8 | mpd 15 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶)) |
10 | elpwi 4542 | . . . . 5 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ⊆ 𝐵) | |
11 | 10 | unssbd 4122 | . . . 4 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵) |
12 | 11 | con3i 154 | . . 3 ⊢ (¬ 𝐶 ⊆ 𝐵 → ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵) |
13 | 9, 12 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) |
14 | eldif 3897 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |