| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifpw | Structured version Visualization version GIF version | ||
| Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| eldifpw.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eldifpw | ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4607 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | unss1 4185 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 3 | eldifpw.1 | . . . . . . 7 ⊢ 𝐶 ∈ V | |
| 4 | unexg 7763 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ∪ 𝐶) ∈ V) | |
| 5 | 3, 4 | mpan2 691 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ V) |
| 6 | elpwg 4603 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐶) ∈ V → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝐵 → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶))) |
| 8 | 2, 7 | imbitrrid 246 | . . . 4 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶))) |
| 9 | 1, 8 | mpd 15 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶)) |
| 10 | elpwi 4607 | . . . . 5 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∪ 𝐶) ⊆ 𝐵) | |
| 11 | 10 | unssbd 4194 | . . . 4 ⊢ ((𝐴 ∪ 𝐶) ∈ 𝒫 𝐵 → 𝐶 ⊆ 𝐵) |
| 12 | 11 | con3i 154 | . . 3 ⊢ (¬ 𝐶 ⊆ 𝐵 → ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵) |
| 13 | 9, 12 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) |
| 14 | eldif 3961 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴 ∪ 𝐶) ∈ 𝒫 (𝐵 ∪ 𝐶) ∧ ¬ (𝐴 ∪ 𝐶) ∈ 𝒫 𝐵)) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 𝒫 cpw 4600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-pw 4602 df-sn 4627 df-pr 4629 df-uni 4908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |