MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifpw Structured version   Visualization version   GIF version

Theorem eldifpw 7596
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
eldifpw ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))

Proof of Theorem eldifpw
StepHypRef Expression
1 elpwi 4539 . . . 4 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 unss1 4109 . . . . 5 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 eldifpw.1 . . . . . . 7 𝐶 ∈ V
4 unexg 7577 . . . . . . 7 ((𝐴 ∈ 𝒫 𝐵𝐶 ∈ V) → (𝐴𝐶) ∈ V)
53, 4mpan2 687 . . . . . 6 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
6 elpwg 4533 . . . . . 6 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
75, 6syl 17 . . . . 5 (𝐴 ∈ 𝒫 𝐵 → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
82, 7syl5ibr 245 . . . 4 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶)))
91, 8mpd 15 . . 3 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶))
10 elpwi 4539 . . . . 5 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ⊆ 𝐵)
1110unssbd 4118 . . . 4 ((𝐴𝐶) ∈ 𝒫 𝐵𝐶𝐵)
1211con3i 154 . . 3 𝐶𝐵 → ¬ (𝐴𝐶) ∈ 𝒫 𝐵)
139, 12anim12i 612 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
14 eldif 3893 . 2 ((𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
1513, 14sylibr 233 1 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator