| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7673 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | uniexr 7696 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 df-uni 4857 |
| This theorem is referenced by: elpwpwel 7700 ixpexg 8846 rankuni 9756 unialeph 9992 ttukeylem1 10400 tgss2 22902 ordtbas2 23106 ordtbas 23107 ordttopon 23108 ordtopn1 23109 ordtopn2 23110 ordtrest2 23119 isref 23424 islocfin 23432 txbasex 23481 ptbasin2 23493 ordthmeolem 23716 alexsublem 23959 alexsub 23960 alexsubb 23961 ussid 24175 ordtrest2NEW 33936 brbigcup 35940 isfne 36383 isfne4 36384 isfne4b 36385 fnessref 36401 neibastop1 36403 fnejoin2 36413 prtex 38989 |
| Copyright terms: Public domain | W3C validator |