| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7716 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | uniexr 7739 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 |
| This theorem is referenced by: elpwpwel 7743 ixpexg 8895 rankuni 9816 unialeph 10054 ttukeylem1 10462 tgss2 22874 ordtbas2 23078 ordtbas 23079 ordttopon 23080 ordtopn1 23081 ordtopn2 23082 ordtrest2 23091 isref 23396 islocfin 23404 txbasex 23453 ptbasin2 23465 ordthmeolem 23688 alexsublem 23931 alexsub 23932 alexsubb 23933 ussid 24148 ordtrest2NEW 33913 brbigcup 35886 isfne 36327 isfne4 36328 isfne4b 36329 fnessref 36345 neibastop1 36347 fnejoin2 36357 prtex 38873 |
| Copyright terms: Public domain | W3C validator |