![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | uniexr 7798 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 df-uni 4932 |
This theorem is referenced by: elpwpwel 7802 ixpexg 8980 rankuni 9932 unialeph 10170 ttukeylem1 10578 tgss2 23015 ordtbas2 23220 ordtbas 23221 ordttopon 23222 ordtopn1 23223 ordtopn2 23224 ordtrest2 23233 isref 23538 islocfin 23546 txbasex 23595 ptbasin2 23607 ordthmeolem 23830 alexsublem 24073 alexsub 24074 alexsubb 24075 ussid 24290 ordtrest2NEW 33869 brbigcup 35862 isfne 36305 isfne4 36306 isfne4b 36307 fnessref 36323 neibastop1 36325 fnejoin2 36335 prtex 38836 |
Copyright terms: Public domain | W3C validator |