MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniexb Structured version   Visualization version   GIF version

Theorem uniexb 7592
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb (𝐴 ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 7571 . 2 (𝐴 ∈ V → 𝐴 ∈ V)
2 uniexr 7591 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
31, 2impbii 208 1 (𝐴 ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  Vcvv 3422   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-pow 5283  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837
This theorem is referenced by:  elpwpwel  7595  ixpexg  8668  rankuni  9552  unialeph  9788  ttukeylem1  10196  tgss2  22045  ordtbas2  22250  ordtbas  22251  ordttopon  22252  ordtopn1  22253  ordtopn2  22254  ordtrest2  22263  isref  22568  islocfin  22576  txbasex  22625  ptbasin2  22637  ordthmeolem  22860  alexsublem  23103  alexsub  23104  alexsubb  23105  ussid  23320  ordtrest2NEW  31775  brbigcup  34127  isfne  34455  isfne4  34456  isfne4b  34457  fnessref  34473  neibastop1  34475  fnejoin2  34485  prtex  36821
  Copyright terms: Public domain W3C validator