MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniexb Structured version   Visualization version   GIF version

Theorem uniexb 7697
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb (𝐴 ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 7673 . 2 (𝐴 ∈ V → 𝐴 ∈ V)
2 uniexr 7696 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
31, 2impbii 209 1 (𝐴 ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pow 5301  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549  df-uni 4857
This theorem is referenced by:  elpwpwel  7700  ixpexg  8846  rankuni  9756  unialeph  9992  ttukeylem1  10400  tgss2  22902  ordtbas2  23106  ordtbas  23107  ordttopon  23108  ordtopn1  23109  ordtopn2  23110  ordtrest2  23119  isref  23424  islocfin  23432  txbasex  23481  ptbasin2  23493  ordthmeolem  23716  alexsublem  23959  alexsub  23960  alexsubb  23961  ussid  24175  ordtrest2NEW  33936  brbigcup  35940  isfne  36383  isfne4  36384  isfne4b  36385  fnessref  36401  neibastop1  36403  fnejoin2  36413  prtex  38989
  Copyright terms: Public domain W3C validator