| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7676 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | uniexr 7699 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 df-uni 4859 |
| This theorem is referenced by: elpwpwel 7703 ixpexg 8849 rankuni 9759 unialeph 9995 ttukeylem1 10403 tgss2 22872 ordtbas2 23076 ordtbas 23077 ordttopon 23078 ordtopn1 23079 ordtopn2 23080 ordtrest2 23089 isref 23394 islocfin 23402 txbasex 23451 ptbasin2 23463 ordthmeolem 23686 alexsublem 23929 alexsub 23930 alexsubb 23931 ussid 24146 ordtrest2NEW 33890 brbigcup 35876 isfne 36317 isfne4 36318 isfne4b 36319 fnessref 36335 neibastop1 36337 fnejoin2 36347 prtex 38863 |
| Copyright terms: Public domain | W3C validator |