| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7739 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | uniexr 7762 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3464 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pow 5340 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 df-uni 4889 |
| This theorem is referenced by: elpwpwel 7766 ixpexg 8941 rankuni 9882 unialeph 10120 ttukeylem1 10528 tgss2 22930 ordtbas2 23134 ordtbas 23135 ordttopon 23136 ordtopn1 23137 ordtopn2 23138 ordtrest2 23147 isref 23452 islocfin 23460 txbasex 23509 ptbasin2 23521 ordthmeolem 23744 alexsublem 23987 alexsub 23988 alexsubb 23989 ussid 24204 ordtrest2NEW 33959 brbigcup 35921 isfne 36362 isfne4 36363 isfne4b 36364 fnessref 36380 neibastop1 36382 fnejoin2 36392 prtex 38903 |
| Copyright terms: Public domain | W3C validator |