![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7759 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | uniexr 7782 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-pw 4607 df-uni 4913 |
This theorem is referenced by: elpwpwel 7786 ixpexg 8961 rankuni 9901 unialeph 10139 ttukeylem1 10547 tgss2 23010 ordtbas2 23215 ordtbas 23216 ordttopon 23217 ordtopn1 23218 ordtopn2 23219 ordtrest2 23228 isref 23533 islocfin 23541 txbasex 23590 ptbasin2 23602 ordthmeolem 23825 alexsublem 24068 alexsub 24069 alexsubb 24070 ussid 24285 ordtrest2NEW 33884 brbigcup 35880 isfne 36322 isfne4 36323 isfne4b 36324 fnessref 36340 neibastop1 36342 fnejoin2 36352 prtex 38862 |
Copyright terms: Public domain | W3C validator |