Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7571 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | uniexr 7591 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: elpwpwel 7595 ixpexg 8668 rankuni 9552 unialeph 9788 ttukeylem1 10196 tgss2 22045 ordtbas2 22250 ordtbas 22251 ordttopon 22252 ordtopn1 22253 ordtopn2 22254 ordtrest2 22263 isref 22568 islocfin 22576 txbasex 22625 ptbasin2 22637 ordthmeolem 22860 alexsublem 23103 alexsub 23104 alexsubb 23105 ussid 23320 ordtrest2NEW 31775 brbigcup 34127 isfne 34455 isfne4 34456 isfne4b 34457 fnessref 34473 neibastop1 34475 fnejoin2 34485 prtex 36821 |
Copyright terms: Public domain | W3C validator |