| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | uniexr 7719 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pow 5315 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 df-uni 4868 |
| This theorem is referenced by: elpwpwel 7723 ixpexg 8872 rankuni 9792 unialeph 10030 ttukeylem1 10438 tgss2 22907 ordtbas2 23111 ordtbas 23112 ordttopon 23113 ordtopn1 23114 ordtopn2 23115 ordtrest2 23124 isref 23429 islocfin 23437 txbasex 23486 ptbasin2 23498 ordthmeolem 23721 alexsublem 23964 alexsub 23965 alexsubb 23966 ussid 24181 ordtrest2NEW 33906 brbigcup 35879 isfne 36320 isfne4 36321 isfne4b 36322 fnessref 36338 neibastop1 36340 fnejoin2 36350 prtex 38866 |
| Copyright terms: Public domain | W3C validator |