| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5316 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 2 | pwexr 7698 | . 2 ⊢ (𝒫 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-pw 4552 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: 2pwuninel 9045 ranklim 9737 r1pwALT 9739 isf34lem6 10271 isfin1-2 10276 pwfseqlem4 10553 pwfseqlem5 10554 gchpwdom 10561 hargch 10564 numufl 23831 |
| Copyright terms: Public domain | W3C validator |