| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexb | Structured version Visualization version GIF version | ||
| Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5333 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 2 | pwexr 7741 | . 2 ⊢ (𝒫 𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: 2pwuninel 9096 ranklim 9797 r1pwALT 9799 isf34lem6 10333 isfin1-2 10338 pwfseqlem4 10615 pwfseqlem5 10616 gchpwdom 10623 hargch 10626 numufl 23802 |
| Copyright terms: Public domain | W3C validator |