MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexb Structured version   Visualization version   GIF version

Theorem pwexb 7765
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)

Proof of Theorem pwexb
StepHypRef Expression
1 pwexg 5353 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
2 pwexr 7764 . 2 (𝒫 𝐴 ∈ V → 𝐴 ∈ V)
31, 2impbii 209 1 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3464  𝒫 cpw 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889
This theorem is referenced by:  2pwuninel  9151  ranklim  9863  r1pwALT  9865  isf34lem6  10399  isfin1-2  10404  pwfseqlem4  10681  pwfseqlem5  10682  gchpwdom  10689  hargch  10692  numufl  23858
  Copyright terms: Public domain W3C validator