Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexb | Structured version Visualization version GIF version |
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5301 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
2 | pwexr 7615 | . 2 ⊢ (𝒫 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: 2pwuninel 8919 ranklim 9602 r1pwALT 9604 isf34lem6 10136 isfin1-2 10141 pwfseqlem4 10418 pwfseqlem5 10419 gchpwdom 10426 hargch 10429 numufl 23066 |
Copyright terms: Public domain | W3C validator |