MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexb Structured version   Visualization version   GIF version

Theorem pwexb 7616
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)

Proof of Theorem pwexb
StepHypRef Expression
1 pwexg 5301 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
2 pwexr 7615 . 2 (𝒫 𝐴 ∈ V → 𝐴 ∈ V)
31, 2impbii 208 1 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3432  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840
This theorem is referenced by:  2pwuninel  8919  ranklim  9602  r1pwALT  9604  isf34lem6  10136  isfin1-2  10141  pwfseqlem4  10418  pwfseqlem5  10419  gchpwdom  10426  hargch  10429  numufl  23066
  Copyright terms: Public domain W3C validator