![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexb | Structured version Visualization version GIF version |
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5396 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
2 | pwexr 7800 | . 2 ⊢ (𝒫 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: 2pwuninel 9198 ranklim 9913 r1pwALT 9915 isf34lem6 10449 isfin1-2 10454 pwfseqlem4 10731 pwfseqlem5 10732 gchpwdom 10739 hargch 10742 numufl 23944 |
Copyright terms: Public domain | W3C validator |