MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexb Structured version   Visualization version   GIF version

Theorem pwexb 7749
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)

Proof of Theorem pwexb
StepHypRef Expression
1 pwexg 5375 . 2 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
2 pwexr 7748 . 2 (𝒫 𝐴 ∈ V → 𝐴 ∈ V)
31, 2impbii 208 1 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3474  𝒫 cpw 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-pw 4603  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by:  2pwuninel  9128  ranklim  9835  r1pwALT  9837  isf34lem6  10371  isfin1-2  10376  pwfseqlem4  10653  pwfseqlem5  10654  gchpwdom  10661  hargch  10664  numufl  23410
  Copyright terms: Public domain W3C validator