Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexb | Structured version Visualization version GIF version |
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5296 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
2 | pwexr 7593 | . 2 ⊢ (𝒫 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: 2pwuninel 8868 ranklim 9533 r1pwALT 9535 isf34lem6 10067 isfin1-2 10072 pwfseqlem4 10349 pwfseqlem5 10350 gchpwdom 10357 hargch 10360 numufl 22974 |
Copyright terms: Public domain | W3C validator |