MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxpi Structured version   Visualization version   GIF version

Theorem elxpi 5699
Description: Membership in a Cartesian product. Uses fewer axioms than elxp 5700. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . . . 5 (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩))
21anbi1d 628 . . . 4 (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
322exbidv 1925 . . 3 (𝑧 = 𝐴 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
4 df-xp 5683 . . . 4 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
5 df-opab 5212 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
64, 5eqtri 2758 . . 3 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
73, 6elab2g 3671 . 2 (𝐴 ∈ (𝐵 × 𝐶) → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
87ibi 266 1 (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  {cab 2707  cop 4635  {copab 5211   × cxp 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-opab 5212  df-xp 5683
This theorem is referenced by:  xpdifid  6168  opreuopreu  8024  djuunxp  9920  rngqiprngimfo  21062  fmla0xp  34670  mnringmulrcld  43291  rrx2plordisom  47498
  Copyright terms: Public domain W3C validator