MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxpi Structured version   Visualization version   GIF version

Theorem elxpi 5722
Description: Membership in a Cartesian product. Uses fewer axioms than elxp 5723. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . . . . 5 (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩))
21anbi1d 630 . . . 4 (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
322exbidv 1923 . . 3 (𝑧 = 𝐴 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
4 df-xp 5706 . . . 4 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
5 df-opab 5229 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
64, 5eqtri 2768 . . 3 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
73, 6elab2g 3696 . 2 (𝐴 ∈ (𝐵 × 𝐶) → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
87ibi 267 1 (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  cop 4654  {copab 5228   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-opab 5229  df-xp 5706
This theorem is referenced by:  xpdifid  6199  opreuopreu  8075  djuunxp  9990  rngqiprngimfo  21334  fsumdvdsmul  27256  fmla0xp  35351  mnringmulrcld  44197  rrx2plordisom  48457
  Copyright terms: Public domain W3C validator