![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxpi | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. Uses fewer axioms than elxp 5654. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxpi | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2741 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩)) | |
2 | 1 | anbi1d 630 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
3 | 2 | 2exbidv 1927 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
4 | df-xp 5637 | . . . 4 ⊢ (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-opab 5166 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} | |
6 | 4, 5 | eqtri 2765 | . . 3 ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} |
7 | 3, 6 | elab2g 3630 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))) |
8 | 7 | ibi 266 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2714 ⟨cop 4590 {copab 5165 × cxp 5629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-opab 5166 df-xp 5637 |
This theorem is referenced by: xpdifid 6118 opreuopreu 7958 djuunxp 9815 fmla0xp 33789 mnringmulrcld 42419 rrx2plordisom 46710 |
Copyright terms: Public domain | W3C validator |