Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrcld Structured version   Visualization version   GIF version

Theorem mnringmulrcld 41735
Description: Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrcld.2 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrcld.3 𝐵 = (Base‘𝐹)
mnringmulrcld.1 𝐴 = (Base‘𝑀)
mnringmulrcld.4 · = (.r𝐹)
mnringmulrcld.5 (𝜑𝑅 ∈ Ring)
mnringmulrcld.6 (𝜑𝑀𝑈)
mnringmulrcld.7 (𝜑𝑋𝐵)
mnringmulrcld.8 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrcld (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem mnringmulrcld
Dummy variables 𝑎 𝑏 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrcld.2 . . 3 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrcld.3 . . 3 𝐵 = (Base‘𝐹)
3 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
5 mnringmulrcld.1 . . 3 𝐴 = (Base‘𝑀)
6 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
7 mnringmulrcld.4 . . 3 · = (.r𝐹)
8 mnringmulrcld.5 . . 3 (𝜑𝑅 ∈ Ring)
9 mnringmulrcld.6 . . 3 (𝜑𝑀𝑈)
10 mnringmulrcld.7 . . 3 (𝜑𝑋𝐵)
11 mnringmulrcld.8 . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mnringmulrvald 41734 . 2 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))))
13 eqid 2738 . . 3 (0g𝐹) = (0g𝐹)
141, 8, 9mnringlmodd 41733 . . . 4 (𝜑𝐹 ∈ LMod)
15 lmodcmn 20086 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ CMnd)
1614, 15syl 17 . . 3 (𝜑𝐹 ∈ CMnd)
175fvexi 6770 . . . . 5 𝐴 ∈ V
1817, 17xpex 7581 . . . 4 (𝐴 × 𝐴) ∈ V
1918a1i 11 . . 3 (𝜑 → (𝐴 × 𝐴) ∈ V)
2083ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → 𝑅 ∈ Ring)
21 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
221, 2, 5, 21, 8, 9, 10mnringbasefd 41722 . . . . . . . . . . . . . . 15 (𝜑𝑋:𝐴⟶(Base‘𝑅))
23223ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑋:𝐴⟶(Base‘𝑅))
24 simp2 1135 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑎𝐴)
2523, 24ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑋𝑎) ∈ (Base‘𝑅))
261, 2, 5, 21, 8, 9, 11mnringbasefd 41722 . . . . . . . . . . . . . . 15 (𝜑𝑌:𝐴⟶(Base‘𝑅))
27263ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑌:𝐴⟶(Base‘𝑅))
28 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑏𝐴)
2927, 28ffvelrnd 6944 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑌𝑏) ∈ (Base‘𝑅))
3021, 3ringcl 19715 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅) ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3120, 25, 29, 30syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3221, 4ring0cl 19723 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3320, 32syl 17 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → (0g𝑅) ∈ (Base‘𝑅))
3431, 33ifcld 4502 . . . . . . . . . . 11 ((𝜑𝑎𝐴𝑏𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3534adantr 480 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑏𝐴) ∧ 𝑖𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3635fmpttd 6971 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3721fvexi 6770 . . . . . . . . . 10 (Base‘𝑅) ∈ V
3837, 17elmap 8617 . . . . . . . . 9 ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3936, 38sylibr 233 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴))
4017a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → 𝐴 ∈ V)
41 eqid 2738 . . . . . . . . 9 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))
4240, 33, 41sniffsupp 9089 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))
4339, 42jca 511 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅)))
4493ad2ant1 1131 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → 𝑀𝑈)
451, 2, 5, 21, 4, 20, 44mnringelbased 41721 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))))
4643, 45mpbird 256 . . . . . 6 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
47463expb 1118 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
4847ralrimivva 3114 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
49 eqid 2738 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
5049fmpo 7881 . . . 4 (∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5148, 50sylib 217 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5217, 17mpoex 7893 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V
5352a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V)
5451ffnd 6585 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) Fn (𝐴 × 𝐴))
5513fvexi 6770 . . . . 5 (0g𝐹) ∈ V
5655a1i 11 . . . 4 (𝜑 → (0g𝐹) ∈ V)
571, 2, 4, 8, 9, 10mnringbasefsuppd 41723 . . . . . 6 (𝜑𝑋 finSupp (0g𝑅))
5857fsuppimpd 9065 . . . . 5 (𝜑 → (𝑋 supp (0g𝑅)) ∈ Fin)
591, 2, 4, 8, 9, 11mnringbasefsuppd 41723 . . . . . 6 (𝜑𝑌 finSupp (0g𝑅))
6059fsuppimpd 9065 . . . . 5 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
61 xpfi 9015 . . . . 5 (((𝑋 supp (0g𝑅)) ∈ Fin ∧ (𝑌 supp (0g𝑅)) ∈ Fin) → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
6258, 60, 61syl2anc 583 . . . 4 (𝜑 → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
63 elxpi 5602 . . . . . . 7 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)))
64 simpl 482 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → 𝑝 = ⟨𝑎, 𝑏⟩)
65642eximi 1839 . . . . . . 7 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6663, 65syl 17 . . . . . 6 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6766adantl 481 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
68 nfv 1918 . . . . . 6 𝑎(𝜑𝑝 ∈ (𝐴 × 𝐴))
69 nfv 1918 . . . . . . 7 𝑎 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
70 nfmpo1 7333 . . . . . . . . 9 𝑎(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
71 nfcv 2906 . . . . . . . . 9 𝑎𝑝
7270, 71nffv 6766 . . . . . . . 8 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
73 nfcv 2906 . . . . . . . 8 𝑎(0g𝐹)
7472, 73nfeq 2919 . . . . . . 7 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
7569, 74nfor 1908 . . . . . 6 𝑎(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
76 nfv 1918 . . . . . . 7 𝑏(𝜑𝑝 ∈ (𝐴 × 𝐴))
77 nfv 1918 . . . . . . . 8 𝑏 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
78 nfmpo2 7334 . . . . . . . . . 10 𝑏(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
79 nfcv 2906 . . . . . . . . . 10 𝑏𝑝
8078, 79nffv 6766 . . . . . . . . 9 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
81 nfcv 2906 . . . . . . . . 9 𝑏(0g𝐹)
8280, 81nfeq 2919 . . . . . . . 8 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
8377, 82nfor 1908 . . . . . . 7 𝑏(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
84 simp3 1136 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
85 simp2 1135 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8684, 85eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴))
87 opelxp 5616 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴) ↔ (𝑎𝐴𝑏𝐴))
8886, 87sylib 217 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴𝑏𝐴))
89 ianor 978 . . . . . . . . . . . . . . . 16 (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ↔ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))))
9022ffnd 6585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 Fn 𝐴)
9117a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ V)
924fvexi 6770 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑅) ∈ V
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g𝑅) ∈ V)
94 elsuppfn 7958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9590, 91, 93, 94syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9695biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
97963ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9824, 97mpand 691 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎) ≠ (0g𝑅) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9998necon1bd 2960 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) → (𝑋𝑎) = (0g𝑅)))
10026ffnd 6585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌 Fn 𝐴)
101 elsuppfn 7958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
102100, 91, 93, 101syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
103102biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
1041033ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
10528, 104mpand 691 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑌𝑏) ≠ (0g𝑅) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
106105necon1bd 2960 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑏 ∈ (𝑌 supp (0g𝑅)) → (𝑌𝑏) = (0g𝑅)))
10799, 106orim12d 961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → ((¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))))
108107imp 406 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
10989, 108sylan2b 593 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
110 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑎) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((0g𝑅)(.r𝑅)(𝑌𝑏)))
11121, 3, 4ringlz 19741 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
11220, 29, 111syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
113110, 112sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑋𝑎) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
114 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝑏) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((𝑋𝑎)(.r𝑅)(0g𝑅)))
11521, 3, 4ringrz 19742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
11620, 25, 115syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
117114, 116sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑌𝑏) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
118113, 117jaodan 954 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
119118adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ 𝑖 = (𝑎(+g𝑀)𝑏)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
120 eqidd 2739 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ ¬ 𝑖 = (𝑎(+g𝑀)𝑏)) → (0g𝑅) = (0g𝑅))
121119, 120ifeqda 4492 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) = (0g𝑅))
122121mpteq2dv 5172 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ (0g𝑅)))
123 fconstmpt 5640 . . . . . . . . . . . . . . . . . . 19 (𝐴 × {(0g𝑅)}) = (𝑖𝐴 ↦ (0g𝑅))
1241, 4, 5, 8, 9mnring0g2d 41727 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝐹))
125123, 124eqtr3id 2793 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
1261253ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
127126adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
128122, 127eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
129109, 128syldan 590 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
130129ex 412 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
131130orrd 859 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1321313expb 1118 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1331323adant3 1130 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
134 eleq1 2826 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ ⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))))
135 opelxp 5616 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))))
136134, 135bitrdi 286 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
1371363ad2ant3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
138 simp2l 1197 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑎𝐴)
139 simp2r 1198 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑏𝐴)
140 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))))
141 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
14217mptex 7081 . . . . . . . . . . . . . . 15 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V
143142a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V)
144140, 141, 143fvmpopr2d 7412 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
145138, 139, 144mpd3an23 1461 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
146145eqeq1d 2740 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
147137, 146orbi12d 915 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)) ↔ ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))))
148133, 147mpbird 256 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
14988, 148syld3an2 1409 . . . . . . . 8 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
1501493expia 1119 . . . . . . 7 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15176, 83, 150exlimd 2214 . . . . . 6 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15268, 75, 151exlimd 2214 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15367, 152mpd 15 . . . 4 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
15453, 54, 56, 62, 153finnzfsuppd 41709 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) finSupp (0g𝐹))
1552, 13, 16, 19, 51, 154gsumcl 19431 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))) ∈ 𝐵)
15612, 155eqeltrd 2839 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  Ringcrg 19698  LModclmod 20038   MndRing cmnring 41713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mnring 41714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator