Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrcld Structured version   Visualization version   GIF version

Theorem mnringmulrcld 41294
Description: Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrcld.2 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrcld.3 𝐵 = (Base‘𝐹)
mnringmulrcld.1 𝐴 = (Base‘𝑀)
mnringmulrcld.4 · = (.r𝐹)
mnringmulrcld.5 (𝜑𝑅 ∈ Ring)
mnringmulrcld.6 (𝜑𝑀𝑈)
mnringmulrcld.7 (𝜑𝑋𝐵)
mnringmulrcld.8 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrcld (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem mnringmulrcld
Dummy variables 𝑎 𝑏 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrcld.2 . . 3 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrcld.3 . . 3 𝐵 = (Base‘𝐹)
3 eqid 2759 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2759 . . 3 (0g𝑅) = (0g𝑅)
5 mnringmulrcld.1 . . 3 𝐴 = (Base‘𝑀)
6 eqid 2759 . . 3 (+g𝑀) = (+g𝑀)
7 mnringmulrcld.4 . . 3 · = (.r𝐹)
8 mnringmulrcld.5 . . 3 (𝜑𝑅 ∈ Ring)
9 mnringmulrcld.6 . . 3 (𝜑𝑀𝑈)
10 mnringmulrcld.7 . . 3 (𝜑𝑋𝐵)
11 mnringmulrcld.8 . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mnringmulrvald 41293 . 2 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))))
13 eqid 2759 . . 3 (0g𝐹) = (0g𝐹)
141, 8, 9mnringlmodd 41292 . . . 4 (𝜑𝐹 ∈ LMod)
15 lmodcmn 19735 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ CMnd)
1614, 15syl 17 . . 3 (𝜑𝐹 ∈ CMnd)
175fvexi 6665 . . . . 5 𝐴 ∈ V
1817, 17xpex 7467 . . . 4 (𝐴 × 𝐴) ∈ V
1918a1i 11 . . 3 (𝜑 → (𝐴 × 𝐴) ∈ V)
2083ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → 𝑅 ∈ Ring)
21 eqid 2759 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
221, 2, 5, 21, 8, 9, 10mnringbasefd 41284 . . . . . . . . . . . . . . 15 (𝜑𝑋:𝐴⟶(Base‘𝑅))
23223ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑋:𝐴⟶(Base‘𝑅))
24 simp2 1135 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑎𝐴)
2523, 24ffvelrnd 6836 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑋𝑎) ∈ (Base‘𝑅))
261, 2, 5, 21, 8, 9, 11mnringbasefd 41284 . . . . . . . . . . . . . . 15 (𝜑𝑌:𝐴⟶(Base‘𝑅))
27263ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑌:𝐴⟶(Base‘𝑅))
28 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑏𝐴)
2927, 28ffvelrnd 6836 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑌𝑏) ∈ (Base‘𝑅))
3021, 3ringcl 19367 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅) ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3120, 25, 29, 30syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3221, 4ring0cl 19375 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3320, 32syl 17 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → (0g𝑅) ∈ (Base‘𝑅))
3431, 33ifcld 4459 . . . . . . . . . . 11 ((𝜑𝑎𝐴𝑏𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3534adantr 485 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑏𝐴) ∧ 𝑖𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3635fmpttd 6863 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3721fvexi 6665 . . . . . . . . . 10 (Base‘𝑅) ∈ V
3837, 17elmap 8446 . . . . . . . . 9 ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3936, 38sylibr 237 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴))
4017a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → 𝐴 ∈ V)
41 eqid 2759 . . . . . . . . 9 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))
4240, 33, 41sniffsupp 8882 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))
4339, 42jca 516 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅)))
4493ad2ant1 1131 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → 𝑀𝑈)
451, 2, 5, 21, 4, 20, 44mnringelbased 41283 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))))
4643, 45mpbird 260 . . . . . 6 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
47463expb 1118 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
4847ralrimivva 3118 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
49 eqid 2759 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
5049fmpo 7763 . . . 4 (∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5148, 50sylib 221 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5217, 17mpoex 7775 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V
5352a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V)
5451ffnd 6492 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) Fn (𝐴 × 𝐴))
5513fvexi 6665 . . . . 5 (0g𝐹) ∈ V
5655a1i 11 . . . 4 (𝜑 → (0g𝐹) ∈ V)
571, 2, 4, 8, 9, 10mnringbasefsuppd 41285 . . . . . 6 (𝜑𝑋 finSupp (0g𝑅))
5857fsuppimpd 8858 . . . . 5 (𝜑 → (𝑋 supp (0g𝑅)) ∈ Fin)
591, 2, 4, 8, 9, 11mnringbasefsuppd 41285 . . . . . 6 (𝜑𝑌 finSupp (0g𝑅))
6059fsuppimpd 8858 . . . . 5 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
61 xpfi 8807 . . . . 5 (((𝑋 supp (0g𝑅)) ∈ Fin ∧ (𝑌 supp (0g𝑅)) ∈ Fin) → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
6258, 60, 61syl2anc 588 . . . 4 (𝜑 → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
63 elxpi 5539 . . . . . . 7 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)))
64 simpl 487 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → 𝑝 = ⟨𝑎, 𝑏⟩)
65642eximi 1838 . . . . . . 7 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6663, 65syl 17 . . . . . 6 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6766adantl 486 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
68 nfv 1916 . . . . . 6 𝑎(𝜑𝑝 ∈ (𝐴 × 𝐴))
69 nfv 1916 . . . . . . 7 𝑎 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
70 nfmpo1 7221 . . . . . . . . 9 𝑎(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
71 nfcv 2917 . . . . . . . . 9 𝑎𝑝
7270, 71nffv 6661 . . . . . . . 8 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
73 nfcv 2917 . . . . . . . 8 𝑎(0g𝐹)
7472, 73nfeq 2930 . . . . . . 7 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
7569, 74nfor 1906 . . . . . 6 𝑎(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
76 nfv 1916 . . . . . . 7 𝑏(𝜑𝑝 ∈ (𝐴 × 𝐴))
77 nfv 1916 . . . . . . . 8 𝑏 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
78 nfmpo2 7222 . . . . . . . . . 10 𝑏(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
79 nfcv 2917 . . . . . . . . . 10 𝑏𝑝
8078, 79nffv 6661 . . . . . . . . 9 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
81 nfcv 2917 . . . . . . . . 9 𝑏(0g𝐹)
8280, 81nfeq 2930 . . . . . . . 8 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
8377, 82nfor 1906 . . . . . . 7 𝑏(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
84 simp3 1136 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
85 simp2 1135 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8684, 85eqeltrrd 2852 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴))
87 opelxp 5553 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴) ↔ (𝑎𝐴𝑏𝐴))
8886, 87sylib 221 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴𝑏𝐴))
89 ianor 980 . . . . . . . . . . . . . . . 16 (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ↔ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))))
9022ffnd 6492 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 Fn 𝐴)
9117a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ V)
924fvexi 6665 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑅) ∈ V
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g𝑅) ∈ V)
94 elsuppfn 7838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9590, 91, 93, 94syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9695biimprd 251 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
97963ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9824, 97mpand 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎) ≠ (0g𝑅) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9998necon1bd 2967 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) → (𝑋𝑎) = (0g𝑅)))
10026ffnd 6492 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌 Fn 𝐴)
101 elsuppfn 7838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
102100, 91, 93, 101syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
103102biimprd 251 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
1041033ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
10528, 104mpand 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑌𝑏) ≠ (0g𝑅) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
106105necon1bd 2967 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑏 ∈ (𝑌 supp (0g𝑅)) → (𝑌𝑏) = (0g𝑅)))
10799, 106orim12d 963 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → ((¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))))
108107imp 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
10989, 108sylan2b 597 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
110 oveq1 7150 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑎) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((0g𝑅)(.r𝑅)(𝑌𝑏)))
11121, 3, 4ringlz 19393 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
11220, 29, 111syl2anc 588 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
113110, 112sylan9eqr 2816 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑋𝑎) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
114 oveq2 7151 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝑏) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((𝑋𝑎)(.r𝑅)(0g𝑅)))
11521, 3, 4ringrz 19394 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
11620, 25, 115syl2anc 588 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
117114, 116sylan9eqr 2816 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑌𝑏) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
118113, 117jaodan 956 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
119118adantr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ 𝑖 = (𝑎(+g𝑀)𝑏)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
120 eqidd 2760 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ ¬ 𝑖 = (𝑎(+g𝑀)𝑏)) → (0g𝑅) = (0g𝑅))
121119, 120ifeqda 4449 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) = (0g𝑅))
122121mpteq2dv 5121 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ (0g𝑅)))
123 fconstmpt 5576 . . . . . . . . . . . . . . . . . . 19 (𝐴 × {(0g𝑅)}) = (𝑖𝐴 ↦ (0g𝑅))
1241, 4, 5, 8, 9mnring0g2d 41288 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝐹))
125123, 124syl5eqr 2808 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
1261253ad2ant1 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
127126adantr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
128122, 127eqtrd 2794 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
129109, 128syldan 595 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
130129ex 417 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
131130orrd 861 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1321313expb 1118 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1331323adant3 1130 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
134 eleq1 2838 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ ⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))))
135 opelxp 5553 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))))
136134, 135syl6bb 291 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
1371363ad2ant3 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
138 simp2l 1197 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑎𝐴)
139 simp2r 1198 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑏𝐴)
140 eqidd 2760 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))))
141 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
14217mptex 6970 . . . . . . . . . . . . . . 15 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V
143142a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V)
144140, 141, 143fvmpopr2d 7299 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
145138, 139, 144mpd3an23 1461 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
146145eqeq1d 2761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
147137, 146orbi12d 917 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)) ↔ ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))))
148133, 147mpbird 260 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
14988, 148syld3an2 1409 . . . . . . . 8 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
1501493expia 1119 . . . . . . 7 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15176, 83, 150exlimd 2217 . . . . . 6 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15268, 75, 151exlimd 2217 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15367, 152mpd 15 . . . 4 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
15453, 54, 56, 62, 153finnzfsuppd 41273 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) finSupp (0g𝐹))
1552, 13, 16, 19, 51, 154gsumcl 19088 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))) ∈ 𝐵)
15612, 155eqeltrd 2851 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wex 1782  wcel 2112  wne 2949  wral 3068  Vcvv 3407  ifcif 4413  {csn 4515  cop 4521   class class class wbr 5025  cmpt 5105   × cxp 5515   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7143  cmpo 7145   supp csupp 7828  m cmap 8409  Fincfn 8520   finSupp cfsupp 8851  Basecbs 16526  +gcplusg 16608  .rcmulr 16609  0gc0g 16756   Σg cgsu 16757  CMndccmn 18958  Ringcrg 19350  LModclmod 19687   MndRing cmnring 41277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-sup 8924  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-fz 12925  df-fzo 13068  df-seq 13404  df-hash 13726  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-ds 16630  df-hom 16632  df-cco 16633  df-0g 16758  df-gsum 16759  df-prds 16764  df-pws 16766  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-cntz 18499  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-subrg 19586  df-lmod 19689  df-lss 19757  df-sra 19997  df-rgmod 19998  df-dsmm 20482  df-frlm 20497  df-mnring 41278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator