Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrcld Structured version   Visualization version   GIF version

Theorem mnringmulrcld 44345
Description: Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrcld.2 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrcld.3 𝐵 = (Base‘𝐹)
mnringmulrcld.1 𝐴 = (Base‘𝑀)
mnringmulrcld.4 · = (.r𝐹)
mnringmulrcld.5 (𝜑𝑅 ∈ Ring)
mnringmulrcld.6 (𝜑𝑀𝑈)
mnringmulrcld.7 (𝜑𝑋𝐵)
mnringmulrcld.8 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrcld (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem mnringmulrcld
Dummy variables 𝑎 𝑏 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrcld.2 . . 3 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrcld.3 . . 3 𝐵 = (Base‘𝐹)
3 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
5 mnringmulrcld.1 . . 3 𝐴 = (Base‘𝑀)
6 eqid 2733 . . 3 (+g𝑀) = (+g𝑀)
7 mnringmulrcld.4 . . 3 · = (.r𝐹)
8 mnringmulrcld.5 . . 3 (𝜑𝑅 ∈ Ring)
9 mnringmulrcld.6 . . 3 (𝜑𝑀𝑈)
10 mnringmulrcld.7 . . 3 (𝜑𝑋𝐵)
11 mnringmulrcld.8 . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mnringmulrvald 44344 . 2 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))))
13 eqid 2733 . . 3 (0g𝐹) = (0g𝐹)
141, 8, 9mnringlmodd 44343 . . . 4 (𝜑𝐹 ∈ LMod)
15 lmodcmn 20845 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ CMnd)
1614, 15syl 17 . . 3 (𝜑𝐹 ∈ CMnd)
175fvexi 6842 . . . . 5 𝐴 ∈ V
1817, 17xpex 7692 . . . 4 (𝐴 × 𝐴) ∈ V
1918a1i 11 . . 3 (𝜑 → (𝐴 × 𝐴) ∈ V)
2083ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → 𝑅 ∈ Ring)
21 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
221, 2, 5, 21, 8, 9, 10mnringbasefd 44335 . . . . . . . . . . . . . . 15 (𝜑𝑋:𝐴⟶(Base‘𝑅))
23223ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑋:𝐴⟶(Base‘𝑅))
24 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑎𝐴)
2523, 24ffvelcdmd 7024 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑋𝑎) ∈ (Base‘𝑅))
261, 2, 5, 21, 8, 9, 11mnringbasefd 44335 . . . . . . . . . . . . . . 15 (𝜑𝑌:𝐴⟶(Base‘𝑅))
27263ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑌:𝐴⟶(Base‘𝑅))
28 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑏𝐴)
2927, 28ffvelcdmd 7024 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑌𝑏) ∈ (Base‘𝑅))
3021, 3ringcl 20170 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅) ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3120, 25, 29, 30syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3221, 4ring0cl 20187 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3320, 32syl 17 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → (0g𝑅) ∈ (Base‘𝑅))
3431, 33ifcld 4521 . . . . . . . . . . 11 ((𝜑𝑎𝐴𝑏𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3534adantr 480 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑏𝐴) ∧ 𝑖𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3635fmpttd 7054 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3721fvexi 6842 . . . . . . . . . 10 (Base‘𝑅) ∈ V
3837, 17elmap 8801 . . . . . . . . 9 ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3936, 38sylibr 234 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴))
4017a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → 𝐴 ∈ V)
41 eqid 2733 . . . . . . . . 9 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))
4240, 33, 41sniffsupp 9291 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))
4339, 42jca 511 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅)))
4493ad2ant1 1133 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → 𝑀𝑈)
451, 2, 5, 21, 4, 20, 44mnringelbased 44334 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))))
4643, 45mpbird 257 . . . . . 6 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
47463expb 1120 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
4847ralrimivva 3176 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
49 eqid 2733 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
5049fmpo 8006 . . . 4 (∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5148, 50sylib 218 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5217, 17mpoex 8017 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V
5352a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V)
5451ffnd 6657 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) Fn (𝐴 × 𝐴))
5513fvexi 6842 . . . . 5 (0g𝐹) ∈ V
5655a1i 11 . . . 4 (𝜑 → (0g𝐹) ∈ V)
571, 2, 4, 8, 9, 10mnringbasefsuppd 44336 . . . . . 6 (𝜑𝑋 finSupp (0g𝑅))
5857fsuppimpd 9260 . . . . 5 (𝜑 → (𝑋 supp (0g𝑅)) ∈ Fin)
591, 2, 4, 8, 9, 11mnringbasefsuppd 44336 . . . . . 6 (𝜑𝑌 finSupp (0g𝑅))
6059fsuppimpd 9260 . . . . 5 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
61 xpfi 9211 . . . . 5 (((𝑋 supp (0g𝑅)) ∈ Fin ∧ (𝑌 supp (0g𝑅)) ∈ Fin) → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
6258, 60, 61syl2anc 584 . . . 4 (𝜑 → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
63 elxpi 5641 . . . . . . 7 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)))
64 simpl 482 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → 𝑝 = ⟨𝑎, 𝑏⟩)
65642eximi 1837 . . . . . . 7 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6663, 65syl 17 . . . . . 6 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6766adantl 481 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
68 nfv 1915 . . . . . 6 𝑎(𝜑𝑝 ∈ (𝐴 × 𝐴))
69 nfv 1915 . . . . . . 7 𝑎 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
70 nfmpo1 7432 . . . . . . . . 9 𝑎(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
71 nfcv 2895 . . . . . . . . 9 𝑎𝑝
7270, 71nffv 6838 . . . . . . . 8 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
73 nfcv 2895 . . . . . . . 8 𝑎(0g𝐹)
7472, 73nfeq 2909 . . . . . . 7 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
7569, 74nfor 1905 . . . . . 6 𝑎(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
76 nfv 1915 . . . . . . 7 𝑏(𝜑𝑝 ∈ (𝐴 × 𝐴))
77 nfv 1915 . . . . . . . 8 𝑏 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
78 nfmpo2 7433 . . . . . . . . . 10 𝑏(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
79 nfcv 2895 . . . . . . . . . 10 𝑏𝑝
8078, 79nffv 6838 . . . . . . . . 9 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
81 nfcv 2895 . . . . . . . . 9 𝑏(0g𝐹)
8280, 81nfeq 2909 . . . . . . . 8 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
8377, 82nfor 1905 . . . . . . 7 𝑏(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
84 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
85 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8684, 85eqeltrrd 2834 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴))
87 opelxp 5655 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴) ↔ (𝑎𝐴𝑏𝐴))
8886, 87sylib 218 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴𝑏𝐴))
89 ianor 983 . . . . . . . . . . . . . . . 16 (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ↔ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))))
9022ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 Fn 𝐴)
9117a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ V)
924fvexi 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑅) ∈ V
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g𝑅) ∈ V)
94 elsuppfn 8106 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9590, 91, 93, 94syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9695biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
97963ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9824, 97mpand 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎) ≠ (0g𝑅) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9998necon1bd 2947 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) → (𝑋𝑎) = (0g𝑅)))
10026ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌 Fn 𝐴)
101 elsuppfn 8106 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
102100, 91, 93, 101syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
103102biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
1041033ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
10528, 104mpand 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑌𝑏) ≠ (0g𝑅) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
106105necon1bd 2947 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑏 ∈ (𝑌 supp (0g𝑅)) → (𝑌𝑏) = (0g𝑅)))
10799, 106orim12d 966 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → ((¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))))
108107imp 406 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
10989, 108sylan2b 594 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
110 oveq1 7359 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑎) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((0g𝑅)(.r𝑅)(𝑌𝑏)))
11121, 3, 4ringlz 20213 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
11220, 29, 111syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
113110, 112sylan9eqr 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑋𝑎) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
114 oveq2 7360 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝑏) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((𝑋𝑎)(.r𝑅)(0g𝑅)))
11521, 3, 4ringrz 20214 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
11620, 25, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
117114, 116sylan9eqr 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑌𝑏) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
118113, 117jaodan 959 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
119118adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ 𝑖 = (𝑎(+g𝑀)𝑏)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
120 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ ¬ 𝑖 = (𝑎(+g𝑀)𝑏)) → (0g𝑅) = (0g𝑅))
121119, 120ifeqda 4511 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) = (0g𝑅))
122121mpteq2dv 5187 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ (0g𝑅)))
123 fconstmpt 5681 . . . . . . . . . . . . . . . . . . 19 (𝐴 × {(0g𝑅)}) = (𝑖𝐴 ↦ (0g𝑅))
1241, 4, 5, 8, 9mnring0g2d 44339 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝐹))
125123, 124eqtr3id 2782 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
1261253ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
127126adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
128122, 127eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
129109, 128syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
130129ex 412 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
131130orrd 863 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1321313expb 1120 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1331323adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
134 eleq1 2821 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ ⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))))
135 opelxp 5655 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))))
136134, 135bitrdi 287 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
1371363ad2ant3 1135 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
138 simp2l 1200 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑎𝐴)
139 simp2r 1201 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑏𝐴)
140 eqidd 2734 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))))
141 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
14217mptex 7163 . . . . . . . . . . . . . . 15 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V
143142a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V)
144140, 141, 143fvmpopr2d 7514 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
145138, 139, 144mpd3an23 1465 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
146145eqeq1d 2735 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
147137, 146orbi12d 918 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)) ↔ ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))))
148133, 147mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
14988, 148syld3an2 1413 . . . . . . . 8 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
1501493expia 1121 . . . . . . 7 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15176, 83, 150exlimd 2223 . . . . . 6 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15268, 75, 151exlimd 2223 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15367, 152mpd 15 . . . 4 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
15453, 54, 56, 62, 153finnzfsuppd 9264 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) finSupp (0g𝐹))
1552, 13, 16, 19, 51, 154gsumcl 19829 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))) ∈ 𝐵)
15612, 155eqeltrd 2833 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  Vcvv 3437  ifcif 4474  {csn 4575  cop 4581   class class class wbr 5093  cmpt 5174   × cxp 5617   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  CMndccmn 19694  Ringcrg 20153  LModclmod 20795   MndRing cmnring 44328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-mnring 44329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator