Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrcld Structured version   Visualization version   GIF version

Theorem mnringmulrcld 41846
Description: Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrcld.2 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrcld.3 𝐵 = (Base‘𝐹)
mnringmulrcld.1 𝐴 = (Base‘𝑀)
mnringmulrcld.4 · = (.r𝐹)
mnringmulrcld.5 (𝜑𝑅 ∈ Ring)
mnringmulrcld.6 (𝜑𝑀𝑈)
mnringmulrcld.7 (𝜑𝑋𝐵)
mnringmulrcld.8 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrcld (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem mnringmulrcld
Dummy variables 𝑎 𝑏 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrcld.2 . . 3 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrcld.3 . . 3 𝐵 = (Base‘𝐹)
3 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
4 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
5 mnringmulrcld.1 . . 3 𝐴 = (Base‘𝑀)
6 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
7 mnringmulrcld.4 . . 3 · = (.r𝐹)
8 mnringmulrcld.5 . . 3 (𝜑𝑅 ∈ Ring)
9 mnringmulrcld.6 . . 3 (𝜑𝑀𝑈)
10 mnringmulrcld.7 . . 3 (𝜑𝑋𝐵)
11 mnringmulrcld.8 . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mnringmulrvald 41845 . 2 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))))
13 eqid 2738 . . 3 (0g𝐹) = (0g𝐹)
141, 8, 9mnringlmodd 41844 . . . 4 (𝜑𝐹 ∈ LMod)
15 lmodcmn 20171 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ CMnd)
1614, 15syl 17 . . 3 (𝜑𝐹 ∈ CMnd)
175fvexi 6788 . . . . 5 𝐴 ∈ V
1817, 17xpex 7603 . . . 4 (𝐴 × 𝐴) ∈ V
1918a1i 11 . . 3 (𝜑 → (𝐴 × 𝐴) ∈ V)
2083ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → 𝑅 ∈ Ring)
21 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
221, 2, 5, 21, 8, 9, 10mnringbasefd 41833 . . . . . . . . . . . . . . 15 (𝜑𝑋:𝐴⟶(Base‘𝑅))
23223ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑋:𝐴⟶(Base‘𝑅))
24 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑎𝐴)
2523, 24ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑋𝑎) ∈ (Base‘𝑅))
261, 2, 5, 21, 8, 9, 11mnringbasefd 41833 . . . . . . . . . . . . . . 15 (𝜑𝑌:𝐴⟶(Base‘𝑅))
27263ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑌:𝐴⟶(Base‘𝑅))
28 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐴𝑏𝐴) → 𝑏𝐴)
2927, 28ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (𝑌𝑏) ∈ (Base‘𝑅))
3021, 3ringcl 19800 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅) ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3120, 25, 29, 30syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
3221, 4ring0cl 19808 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3320, 32syl 17 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → (0g𝑅) ∈ (Base‘𝑅))
3431, 33ifcld 4505 . . . . . . . . . . 11 ((𝜑𝑎𝐴𝑏𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3534adantr 481 . . . . . . . . . 10 (((𝜑𝑎𝐴𝑏𝐴) ∧ 𝑖𝐴) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) ∈ (Base‘𝑅))
3635fmpttd 6989 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3721fvexi 6788 . . . . . . . . . 10 (Base‘𝑅) ∈ V
3837, 17elmap 8659 . . . . . . . . 9 ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))):𝐴⟶(Base‘𝑅))
3936, 38sylibr 233 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴))
4017a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐴𝑏𝐴) → 𝐴 ∈ V)
41 eqid 2738 . . . . . . . . 9 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))
4240, 33, 41sniffsupp 9159 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))
4339, 42jca 512 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅)))
4493ad2ant1 1132 . . . . . . . 8 ((𝜑𝑎𝐴𝑏𝐴) → 𝑀𝑈)
451, 2, 5, 21, 4, 20, 44mnringelbased 41832 . . . . . . 7 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ ((𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐴) ∧ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) finSupp (0g𝑅))))
4643, 45mpbird 256 . . . . . 6 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
47463expb 1119 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
4847ralrimivva 3123 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵)
49 eqid 2738 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
5049fmpo 7908 . . . 4 (∀𝑎𝐴𝑏𝐴 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ 𝐵 ↔ (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5148, 50sylib 217 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))):(𝐴 × 𝐴)⟶𝐵)
5217, 17mpoex 7920 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V
5352a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) ∈ V)
5451ffnd 6601 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) Fn (𝐴 × 𝐴))
5513fvexi 6788 . . . . 5 (0g𝐹) ∈ V
5655a1i 11 . . . 4 (𝜑 → (0g𝐹) ∈ V)
571, 2, 4, 8, 9, 10mnringbasefsuppd 41834 . . . . . 6 (𝜑𝑋 finSupp (0g𝑅))
5857fsuppimpd 9135 . . . . 5 (𝜑 → (𝑋 supp (0g𝑅)) ∈ Fin)
591, 2, 4, 8, 9, 11mnringbasefsuppd 41834 . . . . . 6 (𝜑𝑌 finSupp (0g𝑅))
6059fsuppimpd 9135 . . . . 5 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
61 xpfi 9085 . . . . 5 (((𝑋 supp (0g𝑅)) ∈ Fin ∧ (𝑌 supp (0g𝑅)) ∈ Fin) → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
6258, 60, 61syl2anc 584 . . . 4 (𝜑 → ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∈ Fin)
63 elxpi 5611 . . . . . . 7 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)))
64 simpl 483 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → 𝑝 = ⟨𝑎, 𝑏⟩)
65642eximi 1838 . . . . . . 7 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6663, 65syl 17 . . . . . 6 (𝑝 ∈ (𝐴 × 𝐴) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
6766adantl 482 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → ∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩)
68 nfv 1917 . . . . . 6 𝑎(𝜑𝑝 ∈ (𝐴 × 𝐴))
69 nfv 1917 . . . . . . 7 𝑎 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
70 nfmpo1 7355 . . . . . . . . 9 𝑎(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
71 nfcv 2907 . . . . . . . . 9 𝑎𝑝
7270, 71nffv 6784 . . . . . . . 8 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
73 nfcv 2907 . . . . . . . 8 𝑎(0g𝐹)
7472, 73nfeq 2920 . . . . . . 7 𝑎((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
7569, 74nfor 1907 . . . . . 6 𝑎(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
76 nfv 1917 . . . . . . 7 𝑏(𝜑𝑝 ∈ (𝐴 × 𝐴))
77 nfv 1917 . . . . . . . 8 𝑏 𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))
78 nfmpo2 7356 . . . . . . . . . 10 𝑏(𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
79 nfcv 2907 . . . . . . . . . 10 𝑏𝑝
8078, 79nffv 6784 . . . . . . . . 9 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝)
81 nfcv 2907 . . . . . . . . 9 𝑏(0g𝐹)
8280, 81nfeq 2920 . . . . . . . 8 𝑏((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)
8377, 82nfor 1907 . . . . . . 7 𝑏(𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))
84 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
85 simp2 1136 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8684, 85eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴))
87 opelxp 5625 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐴) ↔ (𝑎𝐴𝑏𝐴))
8886, 87sylib 217 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴𝑏𝐴))
89 ianor 979 . . . . . . . . . . . . . . . 16 (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ↔ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))))
9022ffnd 6601 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 Fn 𝐴)
9117a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ V)
924fvexi 6788 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑅) ∈ V
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g𝑅) ∈ V)
94 elsuppfn 7987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9590, 91, 93, 94syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑎 ∈ (𝑋 supp (0g𝑅)) ↔ (𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅))))
9695biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
97963ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎𝐴 ∧ (𝑋𝑎) ≠ (0g𝑅)) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9824, 97mpand 692 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎) ≠ (0g𝑅) → 𝑎 ∈ (𝑋 supp (0g𝑅))))
9998necon1bd 2961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) → (𝑋𝑎) = (0g𝑅)))
10026ffnd 6601 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌 Fn 𝐴)
101 elsuppfn 7987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 Fn 𝐴𝐴 ∈ V ∧ (0g𝑅) ∈ V) → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
102100, 91, 93, 101syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑏 ∈ (𝑌 supp (0g𝑅)) ↔ (𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅))))
103102biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
1041033ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑏𝐴 ∧ (𝑌𝑏) ≠ (0g𝑅)) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
10528, 104mpand 692 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑌𝑏) ≠ (0g𝑅) → 𝑏 ∈ (𝑌 supp (0g𝑅))))
106105necon1bd 2961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝐴𝑏𝐴) → (¬ 𝑏 ∈ (𝑌 supp (0g𝑅)) → (𝑌𝑏) = (0g𝑅)))
10799, 106orim12d 962 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → ((¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))))
108107imp 407 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ (¬ 𝑎 ∈ (𝑋 supp (0g𝑅)) ∨ ¬ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
10989, 108sylan2b 594 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅)))
110 oveq1 7282 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑎) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((0g𝑅)(.r𝑅)(𝑌𝑏)))
11121, 3, 4ringlz 19826 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑌𝑏) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
11220, 29, 111syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((0g𝑅)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
113110, 112sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑋𝑎) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
114 oveq2 7283 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝑏) = (0g𝑅) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = ((𝑋𝑎)(.r𝑅)(0g𝑅)))
11521, 3, 4ringrz 19827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
11620, 25, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑋𝑎)(.r𝑅)(0g𝑅)) = (0g𝑅))
117114, 116sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐴𝑏𝐴) ∧ (𝑌𝑏) = (0g𝑅)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
118113, 117jaodan 955 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
119118adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ 𝑖 = (𝑎(+g𝑀)𝑏)) → ((𝑋𝑎)(.r𝑅)(𝑌𝑏)) = (0g𝑅))
120 eqidd 2739 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) ∧ ¬ 𝑖 = (𝑎(+g𝑀)𝑏)) → (0g𝑅) = (0g𝑅))
121119, 120ifeqda 4495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)) = (0g𝑅))
122121mpteq2dv 5176 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (𝑖𝐴 ↦ (0g𝑅)))
123 fconstmpt 5649 . . . . . . . . . . . . . . . . . . 19 (𝐴 × {(0g𝑅)}) = (𝑖𝐴 ↦ (0g𝑅))
1241, 4, 5, 8, 9mnring0g2d 41838 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝐹))
125123, 124eqtr3id 2792 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
1261253ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
127126adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ (0g𝑅)) = (0g𝐹))
128122, 127eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴𝑏𝐴) ∧ ((𝑋𝑎) = (0g𝑅) ∨ (𝑌𝑏) = (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
129109, 128syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐴𝑏𝐴) ∧ ¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))
130129ex 413 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴𝑏𝐴) → (¬ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
131130orrd 860 . . . . . . . . . . . 12 ((𝜑𝑎𝐴𝑏𝐴) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1321313expb 1119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
1331323adant3 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
134 eleq1 2826 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ ⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅)))))
135 opelxp 5625 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))))
136134, 135bitrdi 287 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
1371363ad2ant3 1134 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ↔ (𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅)))))
138 simp2l 1198 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑎𝐴)
139 simp2r 1199 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑏𝐴)
140 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))))
141 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → 𝑝 = ⟨𝑎, 𝑏⟩)
14217mptex 7099 . . . . . . . . . . . . . . 15 (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V
143142a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) ∈ V)
144140, 141, 143fvmpopr2d 7434 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) ∧ 𝑎𝐴𝑏𝐴) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
145138, 139, 144mpd3an23 1462 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))
146145eqeq1d 2740 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹) ↔ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹)))
147137, 146orbi12d 916 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → ((𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)) ↔ ((𝑎 ∈ (𝑋 supp (0g𝑅)) ∧ 𝑏 ∈ (𝑌 supp (0g𝑅))) ∨ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))) = (0g𝐹))))
148133, 147mpbird 256 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑏𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
14988, 148syld3an2 1410 . . . . . . . 8 ((𝜑𝑝 ∈ (𝐴 × 𝐴) ∧ 𝑝 = ⟨𝑎, 𝑏⟩) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
1501493expia 1120 . . . . . . 7 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15176, 83, 150exlimd 2211 . . . . . 6 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15268, 75, 151exlimd 2211 . . . . 5 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (∃𝑎𝑏 𝑝 = ⟨𝑎, 𝑏⟩ → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹))))
15367, 152mpd 15 . . . 4 ((𝜑𝑝 ∈ (𝐴 × 𝐴)) → (𝑝 ∈ ((𝑋 supp (0g𝑅)) × (𝑌 supp (0g𝑅))) ∨ ((𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))‘𝑝) = (0g𝐹)))
15453, 54, 56, 62, 153finnzfsuppd 41820 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅)))) finSupp (0g𝐹))
1552, 13, 16, 19, 51, 154gsumcl 19516 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑋𝑎)(.r𝑅)(𝑌𝑏)), (0g𝑅))))) ∈ 𝐵)
15612, 155eqeltrd 2839 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  Vcvv 3432  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  CMndccmn 19386  Ringcrg 19783  LModclmod 20123   MndRing cmnring 41824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mnring 41825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator