| Step | Hyp | Ref
| Expression |
| 1 | | elxp 5708 |
. . . . 5
⊢ (𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 2 | 1 | rexbii 3094 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥 ∈ 𝐴 ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 3 | | rexcom4 3288 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖∃𝑥 ∈ 𝐴 ∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 4 | | rexcom4 3288 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑗∃𝑥 ∈ 𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 5 | 4 | exbii 1848 |
. . . 4
⊢
(∃𝑖∃𝑥 ∈ 𝐴 ∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖∃𝑗∃𝑥 ∈ 𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 6 | 2, 3, 5 | 3bitri 297 |
. . 3
⊢
(∃𝑥 ∈
𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖∃𝑗∃𝑥 ∈ 𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 7 | | eliun 4995 |
. . 3
⊢ (𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥 ∈ 𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥}))) |
| 8 | | eldif 3961 |
. . . . . . 7
⊢
(〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ (〈𝑖, 𝑗〉 ∈ (𝐴 × 𝐵) ∧ ¬ 〈𝑖, 𝑗〉 ∈ I )) |
| 9 | | opelxp 5721 |
. . . . . . . 8
⊢
(〈𝑖, 𝑗〉 ∈ (𝐴 × 𝐵) ↔ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) |
| 10 | | df-br 5144 |
. . . . . . . . . 10
⊢ (𝑖 I 𝑗 ↔ 〈𝑖, 𝑗〉 ∈ I ) |
| 11 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑗 ∈ V |
| 12 | 11 | ideq 5863 |
. . . . . . . . . 10
⊢ (𝑖 I 𝑗 ↔ 𝑖 = 𝑗) |
| 13 | 10, 12 | bitr3i 277 |
. . . . . . . . 9
⊢
(〈𝑖, 𝑗〉 ∈ I ↔ 𝑖 = 𝑗) |
| 14 | 13 | necon3bbii 2988 |
. . . . . . . 8
⊢ (¬
〈𝑖, 𝑗〉 ∈ I ↔ 𝑖 ≠ 𝑗) |
| 15 | 9, 14 | anbi12i 628 |
. . . . . . 7
⊢
((〈𝑖, 𝑗〉 ∈ (𝐴 × 𝐵) ∧ ¬ 〈𝑖, 𝑗〉 ∈ I ) ↔ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 16 | 8, 15 | bitri 275 |
. . . . . 6
⊢
(〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 17 | 16 | anbi2i 623 |
. . . . 5
⊢ ((𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗))) |
| 18 | 17 | 2exbii 1849 |
. . . 4
⊢
(∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )) ↔ ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗))) |
| 19 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → 𝑝 ∈ (𝐴 × 𝐵)) |
| 20 | | elxpi 5707 |
. . . . . . . . 9
⊢ (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵))) |
| 21 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → 𝑝 = 〈𝑖, 𝑗〉) |
| 22 | 21 | 2eximi 1836 |
. . . . . . . . 9
⊢
(∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) → ∃𝑖∃𝑗 𝑝 = 〈𝑖, 𝑗〉) |
| 23 | 19, 20, 22 | 3syl 18 |
. . . . . . . 8
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖∃𝑗 𝑝 = 〈𝑖, 𝑗〉) |
| 24 | 23 | ancli 548 |
. . . . . . 7
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖∃𝑗 𝑝 = 〈𝑖, 𝑗〉)) |
| 25 | | 19.42vv 1957 |
. . . . . . 7
⊢
(∃𝑖∃𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉) ↔ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖∃𝑗 𝑝 = 〈𝑖, 𝑗〉)) |
| 26 | 24, 25 | sylibr 234 |
. . . . . 6
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖∃𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉)) |
| 27 | | ancom 460 |
. . . . . . . 8
⊢ ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))) |
| 28 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑖, 𝑗〉 → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ))) |
| 29 | 28 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ))) |
| 30 | 29 | pm5.32da 579 |
. . . . . . . 8
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 = 〈𝑖, 𝑗〉 ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )))) |
| 31 | 27, 30 | bitrid 283 |
. . . . . . 7
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )))) |
| 32 | 31 | 2exbidv 1924 |
. . . . . 6
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (∃𝑖∃𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = 〈𝑖, 𝑗〉) ↔ ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )))) |
| 33 | 26, 32 | mpbid 232 |
. . . . 5
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ))) |
| 34 | 28 | biimpar 477 |
. . . . . 6
⊢ ((𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) |
| 35 | 34 | exlimivv 1932 |
. . . . 5
⊢
(∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) |
| 36 | 33, 35 | impbii 209 |
. . . 4
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ 〈𝑖, 𝑗〉 ∈ ((𝐴 × 𝐵) ∖ I ))) |
| 37 | | r19.42v 3191 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ ∃𝑥 ∈ 𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 38 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 ∈ {𝑦}) |
| 39 | | velsn 4642 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ {𝑦} ↔ 𝑖 = 𝑦) |
| 40 | 38, 39 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 = 𝑦) |
| 41 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦 ∈ 𝐴) |
| 42 | 40, 41 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 ∈ 𝐴) |
| 43 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗 ∈ (𝐵 ∖ {𝑦})) |
| 44 | 43 | eldifad 3963 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗 ∈ 𝐵) |
| 45 | 43 | eldifbd 3964 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ¬ 𝑗 ∈ {𝑦}) |
| 46 | | velsn 4642 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ {𝑦} ↔ 𝑗 = 𝑦) |
| 47 | 46 | necon3bbii 2988 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑗 ∈ {𝑦} ↔ 𝑗 ≠ 𝑦) |
| 48 | 45, 47 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗 ≠ 𝑦) |
| 49 | 48 | necomd 2996 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦 ≠ 𝑗) |
| 50 | 40, 49 | eqnetrd 3008 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 ≠ 𝑗) |
| 51 | 42, 44, 50 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 52 | 51 | adantll 714 |
. . . . . . . . 9
⊢
(((∃𝑥 ∈
𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ∧ 𝑦 ∈ 𝐴) ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 53 | | sneq 4636 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 54 | 53 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑦})) |
| 55 | 53 | difeq2d 4126 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦})) |
| 56 | 55 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑦}))) |
| 57 | 54, 56 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦})))) |
| 58 | 57 | cbvrexvw 3238 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ∃𝑦 ∈ 𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) |
| 59 | 58 | biimpi 216 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ∃𝑦 ∈ 𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) |
| 60 | 52, 59 | r19.29a 3162 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 61 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝐴) |
| 62 | | vsnid 4663 |
. . . . . . . . . 10
⊢ 𝑖 ∈ {𝑖} |
| 63 | 62 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ {𝑖}) |
| 64 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝐵) |
| 65 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑖 ≠ 𝑗) |
| 66 | 65 | necomd 2996 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑗 ≠ 𝑖) |
| 67 | | velsn 4642 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑖} ↔ 𝑗 = 𝑖) |
| 68 | 67 | necon3bbii 2988 |
. . . . . . . . . . 11
⊢ (¬
𝑗 ∈ {𝑖} ↔ 𝑗 ≠ 𝑖) |
| 69 | 66, 68 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → ¬ 𝑗 ∈ {𝑖}) |
| 70 | 64, 69 | eldifd 3962 |
. . . . . . . . 9
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ (𝐵 ∖ {𝑖})) |
| 71 | | sneq 4636 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → {𝑥} = {𝑖}) |
| 72 | 71 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑖})) |
| 73 | 71 | difeq2d 4126 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑖})) |
| 74 | 73 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑖}))) |
| 75 | 72, 74 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖})))) |
| 76 | 75 | rspcev 3622 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝐴 ∧ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖}))) → ∃𝑥 ∈ 𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) |
| 77 | 61, 63, 70, 76 | syl12anc 837 |
. . . . . . . 8
⊢ (((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗) → ∃𝑥 ∈ 𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) |
| 78 | 60, 77 | impbii 209 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗)) |
| 79 | 78 | anbi2i 623 |
. . . . . 6
⊢ ((𝑝 = 〈𝑖, 𝑗〉 ∧ ∃𝑥 ∈ 𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗))) |
| 80 | 37, 79 | bitri 275 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = 〈𝑖, 𝑗〉 ∧ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗))) |
| 81 | 80 | 2exbii 1849 |
. . . 4
⊢
(∃𝑖∃𝑗∃𝑥 ∈ 𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖∃𝑗(𝑝 = 〈𝑖, 𝑗〉 ∧ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑖 ≠ 𝑗))) |
| 82 | 18, 36, 81 | 3bitr4i 303 |
. . 3
⊢ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖∃𝑗∃𝑥 ∈ 𝐴 (𝑝 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))) |
| 83 | 6, 7, 82 | 3bitr4i 303 |
. 2
⊢ (𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) |
| 84 | 83 | eqriv 2734 |
1
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) |