MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdifid Structured version   Visualization version   GIF version

Theorem xpdifid 5992
Description: The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.)
Assertion
Ref Expression
xpdifid 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xpdifid
Dummy variables 𝑖 𝑗 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5542 . . . . 5 (𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
21rexbii 3210 . . . 4 (∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥𝐴𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
3 rexcom4 3212 . . . 4 (∃𝑥𝐴𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
4 rexcom4 3212 . . . . 5 (∃𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
54exbii 1849 . . . 4 (∃𝑖𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
62, 3, 53bitri 300 . . 3 (∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
7 eliun 4885 . . 3 (𝑝 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})))
8 eldif 3891 . . . . . . 7 (⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ) ↔ (⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ∧ ¬ ⟨𝑖, 𝑗⟩ ∈ I ))
9 opelxp 5555 . . . . . . . 8 (⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ↔ (𝑖𝐴𝑗𝐵))
10 df-br 5031 . . . . . . . . . 10 (𝑖 I 𝑗 ↔ ⟨𝑖, 𝑗⟩ ∈ I )
11 vex 3444 . . . . . . . . . . 11 𝑗 ∈ V
1211ideq 5687 . . . . . . . . . 10 (𝑖 I 𝑗𝑖 = 𝑗)
1310, 12bitr3i 280 . . . . . . . . 9 (⟨𝑖, 𝑗⟩ ∈ I ↔ 𝑖 = 𝑗)
1413necon3bbii 3034 . . . . . . . 8 (¬ ⟨𝑖, 𝑗⟩ ∈ I ↔ 𝑖𝑗)
159, 14anbi12i 629 . . . . . . 7 ((⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ∧ ¬ ⟨𝑖, 𝑗⟩ ∈ I ) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
168, 15bitri 278 . . . . . 6 (⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
1716anbi2i 625 . . . . 5 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
18172exbii 1850 . . . 4 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
19 eldifi 4054 . . . . . . . . 9 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → 𝑝 ∈ (𝐴 × 𝐵))
20 elxpi 5541 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)))
21 simpl 486 . . . . . . . . . 10 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)) → 𝑝 = ⟨𝑖, 𝑗⟩)
22212eximi 1837 . . . . . . . . 9 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)) → ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩)
2319, 20, 223syl 18 . . . . . . . 8 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩)
2423ancli 552 . . . . . . 7 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩))
25 19.42vv 1958 . . . . . . 7 (∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩))
2624, 25sylibr 237 . . . . . 6 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩))
27 ancom 464 . . . . . . . 8 ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )))
28 eleq1 2877 . . . . . . . . . 10 (𝑝 = ⟨𝑖, 𝑗⟩ → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
2928adantl 485 . . . . . . . . 9 ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
3029pm5.32da 582 . . . . . . . 8 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
3127, 30syl5bb 286 . . . . . . 7 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
32312exbidv 1925 . . . . . 6 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
3326, 32mpbid 235 . . . . 5 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
3428biimpar 481 . . . . . 6 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
3534exlimivv 1933 . . . . 5 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
3633, 35impbii 212 . . . 4 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
37 r19.42v 3303 . . . . . 6 (∃𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
38 simprl 770 . . . . . . . . . . . . 13 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 ∈ {𝑦})
39 velsn 4541 . . . . . . . . . . . . 13 (𝑖 ∈ {𝑦} ↔ 𝑖 = 𝑦)
4038, 39sylib 221 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 = 𝑦)
41 simpl 486 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦𝐴)
4240, 41eqeltrd 2890 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖𝐴)
43 simprr 772 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗 ∈ (𝐵 ∖ {𝑦}))
4443eldifad 3893 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗𝐵)
4543eldifbd 3894 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ¬ 𝑗 ∈ {𝑦})
46 velsn 4541 . . . . . . . . . . . . . . 15 (𝑗 ∈ {𝑦} ↔ 𝑗 = 𝑦)
4746necon3bbii 3034 . . . . . . . . . . . . . 14 𝑗 ∈ {𝑦} ↔ 𝑗𝑦)
4845, 47sylib 221 . . . . . . . . . . . . 13 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗𝑦)
4948necomd 3042 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦𝑗)
5040, 49eqnetrd 3054 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖𝑗)
5142, 44, 50jca31 518 . . . . . . . . . 10 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
5251adantll 713 . . . . . . . . 9 (((∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ∧ 𝑦𝐴) ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
53 sneq 4535 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
5453eleq2d 2875 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑦}))
5553difeq2d 4050 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
5655eleq2d 2875 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑦})))
5754, 56anbi12d 633 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))))
5857cbvrexvw 3397 . . . . . . . . . 10 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ∃𝑦𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦})))
5958biimpi 219 . . . . . . . . 9 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ∃𝑦𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦})))
6052, 59r19.29a 3248 . . . . . . . 8 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
61 simpll 766 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖𝐴)
62 vsnid 4562 . . . . . . . . . 10 𝑖 ∈ {𝑖}
6362a1i 11 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖 ∈ {𝑖})
64 simplr 768 . . . . . . . . . 10 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗𝐵)
65 simpr 488 . . . . . . . . . . . 12 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖𝑗)
6665necomd 3042 . . . . . . . . . . 11 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗𝑖)
67 velsn 4541 . . . . . . . . . . . 12 (𝑗 ∈ {𝑖} ↔ 𝑗 = 𝑖)
6867necon3bbii 3034 . . . . . . . . . . 11 𝑗 ∈ {𝑖} ↔ 𝑗𝑖)
6966, 68sylibr 237 . . . . . . . . . 10 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → ¬ 𝑗 ∈ {𝑖})
7064, 69eldifd 3892 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗 ∈ (𝐵 ∖ {𝑖}))
71 sneq 4535 . . . . . . . . . . . 12 (𝑥 = 𝑖 → {𝑥} = {𝑖})
7271eleq2d 2875 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑖}))
7371difeq2d 4050 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑖}))
7473eleq2d 2875 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑖})))
7572, 74anbi12d 633 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖}))))
7675rspcev 3571 . . . . . . . . 9 ((𝑖𝐴 ∧ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖}))) → ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))
7761, 63, 70, 76syl12anc 835 . . . . . . . 8 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))
7860, 77impbii 212 . . . . . . 7 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
7978anbi2i 625 . . . . . 6 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
8037, 79bitri 278 . . . . 5 (∃𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
81802exbii 1850 . . . 4 (∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
8218, 36, 813bitr4i 306 . . 3 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
836, 7, 823bitr4i 306 . 2 (𝑝 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
8483eqriv 2795 1 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  cdif 3878  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030   I cid 5424   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526
This theorem is referenced by:  tglnfn  26341
  Copyright terms: Public domain W3C validator