MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdifid Structured version   Visualization version   GIF version

Theorem xpdifid 6120
Description: The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.)
Assertion
Ref Expression
xpdifid 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xpdifid
Dummy variables 𝑖 𝑗 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5656 . . . . 5 (𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
21rexbii 3097 . . . 4 (∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥𝐴𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
3 rexcom4 3271 . . . 4 (∃𝑥𝐴𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
4 rexcom4 3271 . . . . 5 (∃𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
54exbii 1850 . . . 4 (∃𝑖𝑥𝐴𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
62, 3, 53bitri 296 . . 3 (∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
7 eliun 4958 . . 3 (𝑝 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ ∃𝑥𝐴 𝑝 ∈ ({𝑥} × (𝐵 ∖ {𝑥})))
8 eldif 3920 . . . . . . 7 (⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ) ↔ (⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ∧ ¬ ⟨𝑖, 𝑗⟩ ∈ I ))
9 opelxp 5669 . . . . . . . 8 (⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ↔ (𝑖𝐴𝑗𝐵))
10 df-br 5106 . . . . . . . . . 10 (𝑖 I 𝑗 ↔ ⟨𝑖, 𝑗⟩ ∈ I )
11 vex 3449 . . . . . . . . . . 11 𝑗 ∈ V
1211ideq 5808 . . . . . . . . . 10 (𝑖 I 𝑗𝑖 = 𝑗)
1310, 12bitr3i 276 . . . . . . . . 9 (⟨𝑖, 𝑗⟩ ∈ I ↔ 𝑖 = 𝑗)
1413necon3bbii 2991 . . . . . . . 8 (¬ ⟨𝑖, 𝑗⟩ ∈ I ↔ 𝑖𝑗)
159, 14anbi12i 627 . . . . . . 7 ((⟨𝑖, 𝑗⟩ ∈ (𝐴 × 𝐵) ∧ ¬ ⟨𝑖, 𝑗⟩ ∈ I ) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
168, 15bitri 274 . . . . . 6 (⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
1716anbi2i 623 . . . . 5 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
18172exbii 1851 . . . 4 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
19 eldifi 4086 . . . . . . . . 9 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → 𝑝 ∈ (𝐴 × 𝐵))
20 elxpi 5655 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)))
21 simpl 483 . . . . . . . . . 10 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)) → 𝑝 = ⟨𝑖, 𝑗⟩)
22212eximi 1838 . . . . . . . . 9 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐴𝑗𝐵)) → ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩)
2319, 20, 223syl 18 . . . . . . . 8 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩)
2423ancli 549 . . . . . . 7 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩))
25 19.42vv 1961 . . . . . . 7 (∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ ∃𝑖𝑗 𝑝 = ⟨𝑖, 𝑗⟩))
2624, 25sylibr 233 . . . . . 6 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩))
27 ancom 461 . . . . . . . 8 ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )))
28 eleq1 2825 . . . . . . . . . 10 (𝑝 = ⟨𝑖, 𝑗⟩ → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
2928adantl 482 . . . . . . . . 9 ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) → (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
3029pm5.32da 579 . . . . . . . 8 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I )) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
3127, 30bitrid 282 . . . . . . 7 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ((𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
32312exbidv 1927 . . . . . 6 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → (∃𝑖𝑗(𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ∧ 𝑝 = ⟨𝑖, 𝑗⟩) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I ))))
3326, 32mpbid 231 . . . . 5 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) → ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
3428biimpar 478 . . . . . 6 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
3534exlimivv 1935 . . . . 5 (∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )) → 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
3633, 35impbii 208 . . . 4 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ⟨𝑖, 𝑗⟩ ∈ ((𝐴 × 𝐵) ∖ I )))
37 r19.42v 3187 . . . . . 6 (∃𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
38 simprl 769 . . . . . . . . . . . . 13 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 ∈ {𝑦})
39 velsn 4602 . . . . . . . . . . . . 13 (𝑖 ∈ {𝑦} ↔ 𝑖 = 𝑦)
4038, 39sylib 217 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖 = 𝑦)
41 simpl 483 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦𝐴)
4240, 41eqeltrd 2838 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖𝐴)
43 simprr 771 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗 ∈ (𝐵 ∖ {𝑦}))
4443eldifad 3922 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗𝐵)
4543eldifbd 3923 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ¬ 𝑗 ∈ {𝑦})
46 velsn 4602 . . . . . . . . . . . . . . 15 (𝑗 ∈ {𝑦} ↔ 𝑗 = 𝑦)
4746necon3bbii 2991 . . . . . . . . . . . . . 14 𝑗 ∈ {𝑦} ↔ 𝑗𝑦)
4845, 47sylib 217 . . . . . . . . . . . . 13 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑗𝑦)
4948necomd 2999 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑦𝑗)
5040, 49eqnetrd 3011 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → 𝑖𝑗)
5142, 44, 50jca31 515 . . . . . . . . . 10 ((𝑦𝐴 ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
5251adantll 712 . . . . . . . . 9 (((∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ∧ 𝑦𝐴) ∧ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
53 sneq 4596 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
5453eleq2d 2823 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑦}))
5553difeq2d 4082 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
5655eleq2d 2823 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑦})))
5754, 56anbi12d 631 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦}))))
5857cbvrexvw 3226 . . . . . . . . . 10 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ∃𝑦𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦})))
5958biimpi 215 . . . . . . . . 9 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ∃𝑦𝐴 (𝑖 ∈ {𝑦} ∧ 𝑗 ∈ (𝐵 ∖ {𝑦})))
6052, 59r19.29a 3159 . . . . . . . 8 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) → ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
61 simpll 765 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖𝐴)
62 vsnid 4623 . . . . . . . . . 10 𝑖 ∈ {𝑖}
6362a1i 11 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖 ∈ {𝑖})
64 simplr 767 . . . . . . . . . 10 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗𝐵)
65 simpr 485 . . . . . . . . . . . 12 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑖𝑗)
6665necomd 2999 . . . . . . . . . . 11 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗𝑖)
67 velsn 4602 . . . . . . . . . . . 12 (𝑗 ∈ {𝑖} ↔ 𝑗 = 𝑖)
6867necon3bbii 2991 . . . . . . . . . . 11 𝑗 ∈ {𝑖} ↔ 𝑗𝑖)
6966, 68sylibr 233 . . . . . . . . . 10 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → ¬ 𝑗 ∈ {𝑖})
7064, 69eldifd 3921 . . . . . . . . 9 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → 𝑗 ∈ (𝐵 ∖ {𝑖}))
71 sneq 4596 . . . . . . . . . . . 12 (𝑥 = 𝑖 → {𝑥} = {𝑖})
7271eleq2d 2823 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑖 ∈ {𝑥} ↔ 𝑖 ∈ {𝑖}))
7371difeq2d 4082 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑖}))
7473eleq2d 2823 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑗 ∈ (𝐵 ∖ {𝑥}) ↔ 𝑗 ∈ (𝐵 ∖ {𝑖})))
7572, 74anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖}))))
7675rspcev 3581 . . . . . . . . 9 ((𝑖𝐴 ∧ (𝑖 ∈ {𝑖} ∧ 𝑗 ∈ (𝐵 ∖ {𝑖}))) → ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))
7761, 63, 70, 76syl12anc 835 . . . . . . . 8 (((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗) → ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})))
7860, 77impbii 208 . . . . . . 7 (∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥})) ↔ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗))
7978anbi2i 623 . . . . . 6 ((𝑝 = ⟨𝑖, 𝑗⟩ ∧ ∃𝑥𝐴 (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
8037, 79bitri 274 . . . . 5 (∃𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ (𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
81802exbii 1851 . . . 4 (∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))) ↔ ∃𝑖𝑗(𝑝 = ⟨𝑖, 𝑗⟩ ∧ ((𝑖𝐴𝑗𝐵) ∧ 𝑖𝑗)))
8218, 36, 813bitr4i 302 . . 3 (𝑝 ∈ ((𝐴 × 𝐵) ∖ I ) ↔ ∃𝑖𝑗𝑥𝐴 (𝑝 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ {𝑥} ∧ 𝑗 ∈ (𝐵 ∖ {𝑥}))))
836, 7, 823bitr4i 302 . 2 (𝑝 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) ↔ 𝑝 ∈ ((𝐴 × 𝐵) ∖ I ))
8483eqriv 2733 1 𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586  cop 4592   ciun 4954   class class class wbr 5105   I cid 5530   × cxp 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-iun 4956  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640
This theorem is referenced by:  tglnfn  27489
  Copyright terms: Public domain W3C validator