MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfo Structured version   Visualization version   GIF version

Theorem rngqiprngimfo 21267
Description: 𝐹 is a function from (the base set of) a non-unital ring onto the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 5-Mar-2025.) (Proof shortened by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimfo (𝜑𝐹:𝐵onto→(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimfo
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . 3 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . 3 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . 3 (𝜑𝐽 ∈ Ring)
5 rng2idlring.b . . 3 𝐵 = (Base‘𝑅)
6 rng2idlring.t . . 3 · = (.r𝑅)
7 rng2idlring.1 . . 3 1 = (1r𝐽)
8 rngqiprngim.g . . 3 = (𝑅 ~QG 𝐼)
9 rngqiprngim.q . . 3 𝑄 = (𝑅 /s )
10 rngqiprngim.c . . 3 𝐶 = (Base‘𝑄)
11 rngqiprngim.p . . 3 𝑃 = (𝑄 ×s 𝐽)
12 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimf 21263 . 2 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
14 elxpi 5681 . . . . 5 (𝑏 ∈ (𝐶 × 𝐼) → ∃𝑝𝑞(𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)))
1510eleq2i 2827 . . . . . . . . . . . . . 14 (𝑝𝐶𝑝 ∈ (Base‘𝑄))
16 vex 3468 . . . . . . . . . . . . . . 15 𝑝 ∈ V
178, 9, 5quselbas 19172 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Rng ∧ 𝑝 ∈ V) → (𝑝 ∈ (Base‘𝑄) ↔ ∃𝑐𝐵 𝑝 = [𝑐] ))
181, 16, 17sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → (𝑝 ∈ (Base‘𝑄) ↔ ∃𝑐𝐵 𝑝 = [𝑐] ))
1915, 18bitrid 283 . . . . . . . . . . . . 13 (𝜑 → (𝑝𝐶 ↔ ∃𝑐𝐵 𝑝 = [𝑐] ))
20 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (+g𝑅) = (+g𝑅)
21 rnggrp 20123 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
221, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Grp)
2322ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑅 ∈ Grp)
24 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑐𝐵)
251ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑅 ∈ Rng)
261, 2, 3, 4, 5, 6, 7rngqiprng1elbas 21252 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑1𝐵)
2726ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 1𝐵)
285, 6rngcl 20129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Rng ∧ 1𝐵𝑐𝐵) → ( 1 · 𝑐) ∈ 𝐵)
2925, 27, 24, 28syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ( 1 · 𝑐) ∈ 𝐵)
30 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (-g𝑅) = (-g𝑅)
315, 30grpsubcl 19008 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝑐𝐵 ∧ ( 1 · 𝑐) ∈ 𝐵) → (𝑐(-g𝑅)( 1 · 𝑐)) ∈ 𝐵)
3223, 24, 29, 31syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (𝑐(-g𝑅)( 1 · 𝑐)) ∈ 𝐵)
33 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (2Ideal‘𝑅) = (2Ideal‘𝑅)
345, 332idlss 21228 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
352, 34syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐼𝐵)
3635sselda 3963 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐼) → 𝑞𝐵)
3736adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑞𝐵)
385, 20, 23, 32, 37grpcld 18935 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) ∈ 𝐵)
3938adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐼) ∧ 𝑐𝐵) ∧ 𝑝 = [𝑐] ) → ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) ∈ 𝐵)
40 opeq1 4854 . . . . . . . . . . . . . . . . . . 19 (𝑝 = [𝑐] → ⟨𝑝, 𝑞⟩ = ⟨[𝑐] , 𝑞⟩)
4140adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞𝐼) ∧ 𝑐𝐵) ∧ 𝑝 = [𝑐] ) → ⟨𝑝, 𝑞⟩ = ⟨[𝑐] , 𝑞⟩)
42 eceq1 8763 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) → [𝑎] = [((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] )
43 oveq2 7418 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) → ( 1 · 𝑎) = ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)))
4442, 43opeq12d 4862 . . . . . . . . . . . . . . . . . 18 (𝑎 = ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) → ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨[((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] , ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞))⟩)
4541, 44eqeqan12d 2750 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞𝐼) ∧ 𝑐𝐵) ∧ 𝑝 = [𝑐] ) ∧ 𝑎 = ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)) → (⟨𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩ ↔ ⟨[𝑐] , 𝑞⟩ = ⟨[((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] , ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞))⟩))
46 rngabl 20120 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
471, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ Abel)
4847ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑅 ∈ Abel)
495, 20, 30ablsubaddsub 19800 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Abel ∧ (𝑐𝐵 ∧ ( 1 · 𝑐) ∈ 𝐵𝑞𝐵)) → (((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)(-g𝑅)𝑐) = (𝑞(-g𝑅)( 1 · 𝑐)))
5048, 24, 29, 37, 49syl13anc 1374 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)(-g𝑅)𝑐) = (𝑞(-g𝑅)( 1 · 𝑐)))
514ringgrpd 20207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐽 ∈ Grp)
5251ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝐽 ∈ Grp)
53 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐽) = (Base‘𝐽)
542, 3, 532idlbas 21229 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (Base‘𝐽) = 𝐼)
5554eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐼 = (Base‘𝐽))
5655eleq2d 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑞𝐼𝑞 ∈ (Base‘𝐽)))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑞𝐼) → 𝑞 ∈ (Base‘𝐽))
5857adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑞 ∈ (Base‘𝐽))
591, 2, 3, 4, 5, 6, 7rngqiprngghmlem1 21253 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐𝐵) → ( 1 · 𝑐) ∈ (Base‘𝐽))
6059adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ( 1 · 𝑐) ∈ (Base‘𝐽))
61 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐽) = (-g𝐽)
6253, 61grpsubcl 19008 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ Grp ∧ 𝑞 ∈ (Base‘𝐽) ∧ ( 1 · 𝑐) ∈ (Base‘𝐽)) → (𝑞(-g𝐽)( 1 · 𝑐)) ∈ (Base‘𝐽))
6352, 58, 60, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (𝑞(-g𝐽)( 1 · 𝑐)) ∈ (Base‘𝐽))
64 ringrng 20250 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
654, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ Rng)
663, 65eqeltrrid 2840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑅s 𝐼) ∈ Rng)
671, 2, 66rng2idlnsg 21232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
68 nsgsubg 19146 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐼 ∈ (SubGrp‘𝑅))
7069ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝐼 ∈ (SubGrp‘𝑅))
71 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑞𝐼)
7254ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (Base‘𝐽) = 𝐼)
7360, 72eleqtrd 2837 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ( 1 · 𝑐) ∈ 𝐼)
7430, 3, 61subgsub 19126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (SubGrp‘𝑅) ∧ 𝑞𝐼 ∧ ( 1 · 𝑐) ∈ 𝐼) → (𝑞(-g𝑅)( 1 · 𝑐)) = (𝑞(-g𝐽)( 1 · 𝑐)))
7570, 71, 73, 74syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (𝑞(-g𝑅)( 1 · 𝑐)) = (𝑞(-g𝐽)( 1 · 𝑐)))
7655ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝐼 = (Base‘𝐽))
7763, 75, 763eltr4d 2850 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (𝑞(-g𝑅)( 1 · 𝑐)) ∈ 𝐼)
7850, 77eqeltrd 2835 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → (((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)(-g𝑅)𝑐) ∈ 𝐼)
795, 30, 8qusecsub 19821 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑐𝐵 ∧ ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞) ∈ 𝐵)) → ([𝑐] = [((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] ↔ (((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)(-g𝑅)𝑐) ∈ 𝐼))
8048, 70, 24, 38, 79syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ([𝑐] = [((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] ↔ (((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)(-g𝑅)𝑐) ∈ 𝐼))
8178, 80mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → [𝑐] = [((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] )
821, 2, 3, 4, 5, 6, 7rngqiprngimfolem 21256 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐼𝑐𝐵) → ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)) = 𝑞)
83823expa 1118 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)) = 𝑞)
8483eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → 𝑞 = ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)))
8581, 84opeq12d 4862 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞𝐼) ∧ 𝑐𝐵) → ⟨[𝑐] , 𝑞⟩ = ⟨[((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] , ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞))⟩)
8685adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞𝐼) ∧ 𝑐𝐵) ∧ 𝑝 = [𝑐] ) → ⟨[𝑐] , 𝑞⟩ = ⟨[((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞)] , ( 1 · ((𝑐(-g𝑅)( 1 · 𝑐))(+g𝑅)𝑞))⟩)
8739, 45, 86rspcedvd 3608 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞𝐼) ∧ 𝑐𝐵) ∧ 𝑝 = [𝑐] ) → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩)
8887rexlimdva2 3144 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐼) → (∃𝑐𝐵 𝑝 = [𝑐] → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
8988ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑞𝐼 → (∃𝑐𝐵 𝑝 = [𝑐] → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩)))
9089com23 86 . . . . . . . . . . . . 13 (𝜑 → (∃𝑐𝐵 𝑝 = [𝑐] → (𝑞𝐼 → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩)))
9119, 90sylbid 240 . . . . . . . . . . . 12 (𝜑 → (𝑝𝐶 → (𝑞𝐼 → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩)))
9291impd 410 . . . . . . . . . . 11 (𝜑 → ((𝑝𝐶𝑞𝐼) → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
9392com12 32 . . . . . . . . . 10 ((𝑝𝐶𝑞𝐼) → (𝜑 → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
9493adantl 481 . . . . . . . . 9 ((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) → (𝜑 → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
9594imp 406 . . . . . . . 8 (((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) → ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩)
96 simplll 774 . . . . . . . . . 10 ((((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) ∧ 𝑎𝐵) → 𝑏 = ⟨𝑝, 𝑞⟩)
971, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12rngqiprngimfv 21264 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
9897adantll 714 . . . . . . . . . 10 ((((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) ∧ 𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
9996, 98eqeq12d 2752 . . . . . . . . 9 ((((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) ∧ 𝑎𝐵) → (𝑏 = (𝐹𝑎) ↔ ⟨𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
10099rexbidva 3163 . . . . . . . 8 (((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) → (∃𝑎𝐵 𝑏 = (𝐹𝑎) ↔ ∃𝑎𝐵𝑝, 𝑞⟩ = ⟨[𝑎] , ( 1 · 𝑎)⟩))
10195, 100mpbird 257 . . . . . . 7 (((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) ∧ 𝜑) → ∃𝑎𝐵 𝑏 = (𝐹𝑎))
102101ex 412 . . . . . 6 ((𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) → (𝜑 → ∃𝑎𝐵 𝑏 = (𝐹𝑎)))
103102exlimivv 1932 . . . . 5 (∃𝑝𝑞(𝑏 = ⟨𝑝, 𝑞⟩ ∧ (𝑝𝐶𝑞𝐼)) → (𝜑 → ∃𝑎𝐵 𝑏 = (𝐹𝑎)))
10414, 103syl 17 . . . 4 (𝑏 ∈ (𝐶 × 𝐼) → (𝜑 → ∃𝑎𝐵 𝑏 = (𝐹𝑎)))
105104impcom 407 . . 3 ((𝜑𝑏 ∈ (𝐶 × 𝐼)) → ∃𝑎𝐵 𝑏 = (𝐹𝑎))
106105ralrimiva 3133 . 2 (𝜑 → ∀𝑏 ∈ (𝐶 × 𝐼)∃𝑎𝐵 𝑏 = (𝐹𝑎))
107 dffo3 7097 . 2 (𝐹:𝐵onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵⟶(𝐶 × 𝐼) ∧ ∀𝑏 ∈ (𝐶 × 𝐼)∃𝑎𝐵 𝑏 = (𝐹𝑎)))
10813, 106, 107sylanbrc 583 1 (𝜑𝐹:𝐵onto→(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931  cop 4612  cmpt 5206   × cxp 5657  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  [cec 8722  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277   /s cqus 17524   ×s cxps 17525  Grpcgrp 18921  -gcsg 18923  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110  Abelcabl 19767  Rngcrng 20117  1rcur 20146  Ringcrg 20198  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-nsg 19112  df-eqg 19113  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-subrng 20511  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-2idl 21216
This theorem is referenced by:  rngqiprngim  21270
  Copyright terms: Public domain W3C validator