MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp Structured version   Visualization version   GIF version

Theorem elxp 5346
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 5330 . . 3 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
21eleq2i 2888 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
3 elopab 5191 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
42, 3bitri 266 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2157  cop 4387  {copab 4917   × cxp 5322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pr 5109
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-v 3404  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-opab 4918  df-xp 5330
This theorem is referenced by:  elxp2  5347  0nelxp  5357  0nelelxp  5358  rabxp  5367  elxp3  5382  elvv  5390  elvvv  5391  0xp  5414  dfres3  5615  xpdifid  5786  dfco2a  5862  elsnxp  5904  tpres  6700  elxp4  7349  elxp5  7350  opabex3d  7384  opabex3  7385  xp1st  7439  xp2nd  7440  poxp  7532  soxp  7533  xpsnen  8292  xpcomco  8298  xpassen  8302  dfac5lem1  9238  dfac5lem4  9241  axdc4lem  9571  fsum2dlem  14743  fprod2dlem  14950  numclwwlk1lem2fo  27559  elima4  32020  brcart  32381  brimg  32386  dibelval3  36945
  Copyright terms: Public domain W3C validator