| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5647 | . . 3 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 3 | elopab 5490 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4598 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: elxp2 5665 0nelxp 5675 0nelelxp 5676 rabxp 5689 elxp3 5707 elvv 5716 elvvv 5717 0xp 5740 dfres3 5958 xpdifid 6144 dfco2a 6222 elsnxp 6267 tpres 7178 elxp4 7901 elxp5 7902 opabex3d 7947 opabex3rd 7948 opabex3 7949 xp1st 8003 xp2nd 8004 poxp 8110 soxp 8111 xpsnen 9029 xpcomco 9036 xpassen 9040 dfac5lem1 10083 dfac5lem4 10086 dfac5lem4OLD 10088 axdc4lem 10415 fsum2dlem 15743 fprod2dlem 15953 numclwwlk1lem2fo 30294 satefvfmla0 35412 elima4 35770 brcart 35927 brimg 35932 dibelval3 41148 |
| Copyright terms: Public domain | W3C validator |