Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5586 | . . 3 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
3 | elopab 5433 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: elxp2 5604 0nelxp 5614 0nelelxp 5615 rabxp 5626 elxp3 5644 elvv 5652 elvvv 5653 0xp 5675 dfres3 5885 xpdifid 6060 dfco2a 6139 elsnxp 6183 tpres 7058 elxp4 7743 elxp5 7744 opabex3d 7781 opabex3rd 7782 opabex3 7783 xp1st 7836 xp2nd 7837 poxp 7940 soxp 7941 xpsnen 8796 xpcomco 8802 xpassen 8806 dfac5lem1 9810 dfac5lem4 9813 axdc4lem 10142 fsum2dlem 15410 fprod2dlem 15618 numclwwlk1lem2fo 28623 satefvfmla0 33280 elima4 33656 brcart 34161 brimg 34166 dibelval3 39088 |
Copyright terms: Public domain | W3C validator |