| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5629 | . . 3 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 3 | elopab 5474 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4585 {copab 5157 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: elxp2 5647 0nelxp 5657 0nelelxp 5658 rabxp 5671 elxp3 5689 elvv 5698 elvvv 5699 0xp 5722 dfres3 5939 xpdifid 6121 dfco2a 6199 elsnxp 6243 tpres 7141 elxp4 7862 elxp5 7863 opabex3d 7907 opabex3rd 7908 opabex3 7909 xp1st 7963 xp2nd 7964 poxp 8068 soxp 8069 xpsnen 8985 xpcomco 8991 xpassen 8995 dfac5lem1 10036 dfac5lem4 10039 dfac5lem4OLD 10041 axdc4lem 10368 fsum2dlem 15695 fprod2dlem 15905 numclwwlk1lem2fo 30320 satefvfmla0 35390 elima4 35748 brcart 35905 brimg 35910 dibelval3 41126 |
| Copyright terms: Public domain | W3C validator |