| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5622 | . . 3 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
| 3 | elopab 5467 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4582 {copab 5153 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: elxp2 5640 0nelxp 5650 0nelelxp 5651 rabxp 5664 elxp3 5682 elvv 5691 elvvv 5692 0xp 5715 dfres3 5933 xpdifid 6115 dfco2a 6193 elsnxp 6238 tpres 7135 elxp4 7852 elxp5 7853 opabex3d 7897 opabex3rd 7898 opabex3 7899 xp1st 7953 xp2nd 7954 poxp 8058 soxp 8059 xpsnen 8974 xpcomco 8980 xpassen 8984 dfac5lem1 10011 dfac5lem4 10014 dfac5lem4OLD 10016 axdc4lem 10343 fsum2dlem 15674 fprod2dlem 15884 numclwwlk1lem2fo 30333 satefvfmla0 35450 elima4 35808 brcart 35965 brimg 35970 dibelval3 41185 |
| Copyright terms: Public domain | W3C validator |