![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5449 | . . 3 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
2 | 1 | eleq2i 2874 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
3 | elopab 5304 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 2, 3 | bitri 276 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1522 ∃wex 1761 ∈ wcel 2081 〈cop 4478 {copab 5024 × cxp 5441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-opab 5025 df-xp 5449 |
This theorem is referenced by: elxp2 5467 0nelxp 5477 0nelelxp 5478 rabxp 5488 elxp3 5504 elvv 5512 elvvv 5513 0xp 5535 dfres3 5739 xpdifid 5901 dfco2a 5974 elsnxp 6017 tpres 6830 elxp4 7483 elxp5 7484 opabex3d 7522 opabex3rd 7523 opabex3 7524 xp1st 7577 xp2nd 7578 poxp 7675 soxp 7676 xpsnen 8448 xpcomco 8454 xpassen 8458 dfac5lem1 9395 dfac5lem4 9398 axdc4lem 9723 fsum2dlem 14958 fprod2dlem 15167 numclwwlk1lem2fo 27829 satefvfmla0 32273 elima4 32627 brcart 33002 brimg 33007 dibelval3 37814 |
Copyright terms: Public domain | W3C validator |