![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elxp | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5644 | . . 3 ⊢ (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
3 | elopab 5489 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⟨cop 4597 {copab 5172 × cxp 5636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-xp 5644 |
This theorem is referenced by: elxp2 5662 0nelxp 5672 0nelelxp 5673 rabxp 5685 elxp3 5703 elvv 5711 elvvv 5712 0xp 5735 dfres3 5947 xpdifid 6125 dfco2a 6203 elsnxp 6248 tpres 7155 elxp4 7864 elxp5 7865 opabex3d 7903 opabex3rd 7904 opabex3 7905 xp1st 7958 xp2nd 7959 poxp 8065 soxp 8066 xpsnen 9006 xpcomco 9013 xpassen 9017 dfac5lem1 10066 dfac5lem4 10069 axdc4lem 10398 fsum2dlem 15662 fprod2dlem 15870 numclwwlk1lem2fo 29344 satefvfmla0 34052 elima4 34389 brcart 34546 brimg 34551 dibelval3 39639 |
Copyright terms: Public domain | W3C validator |