Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version |
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
0sn0ep | ⊢ ∅ E {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4594 | . 2 ⊢ ∅ ∈ {∅} |
3 | snex 5349 | . . 3 ⊢ {∅} ∈ V | |
4 | 3 | epeli 5488 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
5 | 2, 4 | mpbir 230 | 1 ⊢ ∅ E {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4253 {csn 4558 class class class wbr 5070 E cep 5485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 |
This theorem is referenced by: epn0 5491 |
Copyright terms: Public domain | W3C validator |