|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version | ||
| Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| 0sn0ep | ⊢ ∅ E {∅} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4662 | . 2 ⊢ ∅ ∈ {∅} | 
| 3 | snex 5436 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 3 | epeli 5586 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) | 
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∅ E {∅} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2108 ∅c0 4333 {csn 4626 class class class wbr 5143 E cep 5583 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 | 
| This theorem is referenced by: epn0 5589 | 
| Copyright terms: Public domain | W3C validator |