MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5557
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 5277 . . 3 ∅ ∈ V
21snid 4638 . 2 ∅ ∈ {∅}
3 snex 5406 . . 3 {∅} ∈ V
43epeli 5555 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 231 1 ∅ E {∅}
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  c0 4308  {csn 4601   class class class wbr 5119   E cep 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553
This theorem is referenced by:  epn0  5558
  Copyright terms: Public domain W3C validator