MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5499
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 5231 . . 3 ∅ ∈ V
21snid 4597 . 2 ∅ ∈ {∅}
3 snex 5354 . . 3 {∅} ∈ V
43epeli 5497 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 230 1 ∅ E {∅}
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  c0 4256  {csn 4561   class class class wbr 5074   E cep 5494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495
This theorem is referenced by:  epn0  5500
  Copyright terms: Public domain W3C validator