MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5590
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 5311 . . 3 ∅ ∈ V
21snid 4669 . 2 ∅ ∈ {∅}
3 snex 5437 . . 3 {∅} ∈ V
43epeli 5588 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 230 1 ∅ E {∅}
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  c0 4326  {csn 4632   class class class wbr 5152   E cep 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-eprel 5586
This theorem is referenced by:  epn0  5591
  Copyright terms: Public domain W3C validator