MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5542
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 5262 . . 3 ∅ ∈ V
21snid 4626 . 2 ∅ ∈ {∅}
3 snex 5391 . . 3 {∅} ∈ V
43epeli 5540 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 231 1 ∅ E {∅}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  c0 4296  {csn 4589   class class class wbr 5107   E cep 5537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538
This theorem is referenced by:  epn0  5543
  Copyright terms: Public domain W3C validator