| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version | ||
| Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) |
| Ref | Expression |
|---|---|
| 0sn0ep | ⊢ ∅ E {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4615 | . 2 ⊢ ∅ ∈ {∅} |
| 3 | snex 5374 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 3 | epeli 5518 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∅ E {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∅c0 4283 {csn 4576 class class class wbr 5091 E cep 5515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-eprel 5516 |
| This theorem is referenced by: epn0 5521 |
| Copyright terms: Public domain | W3C validator |