![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version |
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
0sn0ep | ⊢ ∅ E {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4684 | . 2 ⊢ ∅ ∈ {∅} |
3 | snex 5451 | . . 3 ⊢ {∅} ∈ V | |
4 | 3 | epeli 5601 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
5 | 2, 4 | mpbir 231 | 1 ⊢ ∅ E {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4352 {csn 4648 class class class wbr 5166 E cep 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 |
This theorem is referenced by: epn0 5604 |
Copyright terms: Public domain | W3C validator |