| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version | ||
| Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) |
| Ref | Expression |
|---|---|
| 0sn0ep | ⊢ ∅ E {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4614 | . 2 ⊢ ∅ ∈ {∅} |
| 3 | snex 5376 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 3 | epeli 5521 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∅ E {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∅c0 4282 {csn 4575 class class class wbr 5093 E cep 5518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 |
| This theorem is referenced by: epn0 5524 |
| Copyright terms: Public domain | W3C validator |