MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sn0ep Structured version   Visualization version   GIF version

Theorem 0sn0ep 5520
Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
0sn0ep ∅ E {∅}

Proof of Theorem 0sn0ep
StepHypRef Expression
1 0ex 5245 . . 3 ∅ ∈ V
21snid 4615 . 2 ∅ ∈ {∅}
3 snex 5374 . . 3 {∅} ∈ V
43epeli 5518 . 2 (∅ E {∅} ↔ ∅ ∈ {∅})
52, 4mpbir 231 1 ∅ E {∅}
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  c0 4283  {csn 4576   class class class wbr 5091   E cep 5515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-eprel 5516
This theorem is referenced by:  epn0  5521
  Copyright terms: Public domain W3C validator