| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sn0ep | Structured version Visualization version GIF version | ||
| Description: An example for the membership relation. (Contributed by AV, 19-Jun-2022.) |
| Ref | Expression |
|---|---|
| 0sn0ep | ⊢ ∅ E {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4626 | . 2 ⊢ ∅ ∈ {∅} |
| 3 | snex 5391 | . . 3 ⊢ {∅} ∈ V | |
| 4 | 3 | epeli 5540 | . 2 ⊢ (∅ E {∅} ↔ ∅ ∈ {∅}) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∅ E {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4296 {csn 4589 class class class wbr 5107 E cep 5537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 |
| This theorem is referenced by: epn0 5543 |
| Copyright terms: Public domain | W3C validator |