| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabrd | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction (deduction form of eqabb 2870). (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| eqabrd.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Ref | Expression |
|---|---|
| eqabrd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
| 3 | abid 2713 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
| 4 | 2, 3 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eqabri 2874 fvelimab 6894 mapsnend 8958 nosupbnd2 27655 noinfbnd2 27670 fvineqsneu 37453 fvineqsneq 37454 ispridlc 38118 ac6s6 38220 dib1dim 41212 prprspr2 47557 |
| Copyright terms: Public domain | W3C validator |