![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabrd | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (deduction form of eqabb 2873). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
eqabrd.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Ref | Expression |
---|---|
eqabrd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
2 | 1 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
3 | abid 2713 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
4 | 2, 3 | bitrdi 286 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 |
This theorem is referenced by: eqabri 2877 fvelimab 6964 mapsnend 9035 nosupbnd2 27216 noinfbnd2 27231 fvineqsneu 36287 fvineqsneq 36288 ispridlc 36933 ac6s6 37035 dib1dim 40031 prprspr2 46176 |
Copyright terms: Public domain | W3C validator |