MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabrd Structured version   Visualization version   GIF version

Theorem eqabrd 2876
Description: Equality of a class variable and a class abstraction (deduction form of eqabb 2873). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
eqabrd.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
eqabrd (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem eqabrd
StepHypRef Expression
1 eqabrd.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2819 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2713 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3bitrdi 286 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810
This theorem is referenced by:  eqabri  2877  fvelimab  6964  mapsnend  9035  nosupbnd2  27216  noinfbnd2  27231  fvineqsneu  36287  fvineqsneq  36288  ispridlc  36933  ac6s6  37035  dib1dim  40031  prprspr2  46176
  Copyright terms: Public domain W3C validator