MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Visualization version   GIF version

Theorem fullpropd 17831
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fullpropd (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))

Proof of Theorem fullpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 17819 . 2 Rel (𝐴 Full 𝐶)
2 relfull 17819 . 2 Rel (𝐵 Full 𝐷)
3 fullpropd.1 . . . . . . . 8 (𝜑 → (Homf𝐴) = (Homf𝐵))
43homfeqbas 17604 . . . . . . 7 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
54adantr 480 . . . . . 6 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (Base‘𝐴) = (Base‘𝐵))
65adantr 480 . . . . . . 7 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
7 eqid 2733 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2733 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2733 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
10 fullpropd.3 . . . . . . . . . 10 (𝜑 → (Homf𝐶) = (Homf𝐷))
1110ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
12 eqid 2733 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
13 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓(𝐴 Func 𝐶)𝑔)
1412, 7, 13funcf1 17775 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶))
15 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
1614, 15ffvelcdmd 7024 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑥) ∈ (Base‘𝐶))
17 simpr 484 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
1814, 17ffvelcdmd 7024 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑦) ∈ (Base‘𝐶))
197, 8, 9, 11, 16, 18homfeqval 17605 . . . . . . . 8 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
2019eqeq2d 2744 . . . . . . 7 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
216, 20raleqbidva 3299 . . . . . 6 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
225, 21raleqbidva 3299 . . . . 5 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
24 fullpropd.2 . . . . . . 7 (𝜑 → (compf𝐴) = (compf𝐵))
25 fullpropd.4 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
26 fullpropd.a . . . . . . 7 (𝜑𝐴𝑉)
27 fullpropd.b . . . . . . 7 (𝜑𝐵𝑉)
28 fullpropd.c . . . . . . 7 (𝜑𝐶𝑉)
29 fullpropd.d . . . . . . 7 (𝜑𝐷𝑉)
303, 24, 10, 25, 26, 27, 28, 29funcpropd 17811 . . . . . 6 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
3130breqd 5104 . . . . 5 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
3231anbi1d 631 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3323, 32bitrd 279 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3412, 8isfull 17821 . . 3 (𝑓(𝐴 Full 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
35 eqid 2733 . . . 4 (Base‘𝐵) = (Base‘𝐵)
3635, 9isfull 17821 . . 3 (𝑓(𝐵 Full 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
3733, 34, 363bitr4g 314 . 2 (𝜑 → (𝑓(𝐴 Full 𝐶)𝑔𝑓(𝐵 Full 𝐷)𝑔))
381, 2, 37eqbrrdiv 5738 1 (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  ran crn 5620  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  Homf chomf 17574  compfccomf 17575   Func cfunc 17763   Full cful 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-homf 17578  df-comf 17579  df-func 17767  df-full 17815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator