MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Visualization version   GIF version

Theorem fullpropd 17826
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fullpropd (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))

Proof of Theorem fullpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 17814 . 2 Rel (𝐴 Full 𝐶)
2 relfull 17814 . 2 Rel (𝐵 Full 𝐷)
3 fullpropd.1 . . . . . . . 8 (𝜑 → (Homf𝐴) = (Homf𝐵))
43homfeqbas 17599 . . . . . . 7 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
54adantr 480 . . . . . 6 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (Base‘𝐴) = (Base‘𝐵))
65adantr 480 . . . . . . 7 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
7 eqid 2731 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2731 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2731 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
10 fullpropd.3 . . . . . . . . . 10 (𝜑 → (Homf𝐶) = (Homf𝐷))
1110ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
12 eqid 2731 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
13 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓(𝐴 Func 𝐶)𝑔)
1412, 7, 13funcf1 17770 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶))
15 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
1614, 15ffvelcdmd 7018 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑥) ∈ (Base‘𝐶))
17 simpr 484 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
1814, 17ffvelcdmd 7018 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑦) ∈ (Base‘𝐶))
197, 8, 9, 11, 16, 18homfeqval 17600 . . . . . . . 8 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
2019eqeq2d 2742 . . . . . . 7 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
216, 20raleqbidva 3298 . . . . . 6 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
225, 21raleqbidva 3298 . . . . 5 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
24 fullpropd.2 . . . . . . 7 (𝜑 → (compf𝐴) = (compf𝐵))
25 fullpropd.4 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
26 fullpropd.a . . . . . . 7 (𝜑𝐴𝑉)
27 fullpropd.b . . . . . . 7 (𝜑𝐵𝑉)
28 fullpropd.c . . . . . . 7 (𝜑𝐶𝑉)
29 fullpropd.d . . . . . . 7 (𝜑𝐷𝑉)
303, 24, 10, 25, 26, 27, 28, 29funcpropd 17806 . . . . . 6 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
3130breqd 5102 . . . . 5 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
3231anbi1d 631 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3323, 32bitrd 279 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3412, 8isfull 17816 . . 3 (𝑓(𝐴 Full 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
35 eqid 2731 . . . 4 (Base‘𝐵) = (Base‘𝐵)
3635, 9isfull 17816 . . 3 (𝑓(𝐵 Full 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
3733, 34, 363bitr4g 314 . 2 (𝜑 → (𝑓(𝐴 Full 𝐶)𝑔𝑓(𝐵 Full 𝐷)𝑔))
381, 2, 37eqbrrdiv 5734 1 (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  ran crn 5617  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  Homf chomf 17569  compfccomf 17570   Func cfunc 17758   Full cful 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-homf 17573  df-comf 17574  df-func 17762  df-full 17810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator