MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Visualization version   GIF version

Theorem fullpropd 17847
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fullpropd (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))

Proof of Theorem fullpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 17835 . 2 Rel (𝐴 Full 𝐶)
2 relfull 17835 . 2 Rel (𝐵 Full 𝐷)
3 fullpropd.1 . . . . . . . 8 (𝜑 → (Homf𝐴) = (Homf𝐵))
43homfeqbas 17620 . . . . . . 7 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
54adantr 480 . . . . . 6 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (Base‘𝐴) = (Base‘𝐵))
65adantr 480 . . . . . . 7 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
7 eqid 2729 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2729 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
10 fullpropd.3 . . . . . . . . . 10 (𝜑 → (Homf𝐶) = (Homf𝐷))
1110ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
12 eqid 2729 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
13 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓(𝐴 Func 𝐶)𝑔)
1412, 7, 13funcf1 17791 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶))
15 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
1614, 15ffvelcdmd 7023 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑥) ∈ (Base‘𝐶))
17 simpr 484 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
1814, 17ffvelcdmd 7023 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑦) ∈ (Base‘𝐶))
197, 8, 9, 11, 16, 18homfeqval 17621 . . . . . . . 8 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
2019eqeq2d 2740 . . . . . . 7 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
216, 20raleqbidva 3296 . . . . . 6 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
225, 21raleqbidva 3296 . . . . 5 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
24 fullpropd.2 . . . . . . 7 (𝜑 → (compf𝐴) = (compf𝐵))
25 fullpropd.4 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
26 fullpropd.a . . . . . . 7 (𝜑𝐴𝑉)
27 fullpropd.b . . . . . . 7 (𝜑𝐵𝑉)
28 fullpropd.c . . . . . . 7 (𝜑𝐶𝑉)
29 fullpropd.d . . . . . . 7 (𝜑𝐷𝑉)
303, 24, 10, 25, 26, 27, 28, 29funcpropd 17827 . . . . . 6 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
3130breqd 5106 . . . . 5 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
3231anbi1d 631 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3323, 32bitrd 279 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3412, 8isfull 17837 . . 3 (𝑓(𝐴 Full 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
35 eqid 2729 . . . 4 (Base‘𝐵) = (Base‘𝐵)
3635, 9isfull 17837 . . 3 (𝑓(𝐵 Full 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
3733, 34, 363bitr4g 314 . 2 (𝜑 → (𝑓(𝐴 Full 𝐶)𝑔𝑓(𝐵 Full 𝐷)𝑔))
381, 2, 37eqbrrdiv 5741 1 (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  ran crn 5624  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  Homf chomf 17590  compfccomf 17591   Func cfunc 17779   Full cful 17829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-homf 17594  df-comf 17595  df-func 17783  df-full 17831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator