Step | Hyp | Ref
| Expression |
1 | | relfull 17415 |
. 2
⊢ Rel
(𝐴 Full 𝐶) |
2 | | relfull 17415 |
. 2
⊢ Rel
(𝐵 Full 𝐷) |
3 | | fullpropd.1 |
. . . . . . . 8
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
4 | 3 | homfeqbas 17199 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
5 | 4 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) → (Base‘𝐴) = (Base‘𝐵)) |
6 | 5 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
7 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐶) =
(Base‘𝐶) |
8 | | eqid 2737 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
9 | | eqid 2737 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
10 | | fullpropd.3 |
. . . . . . . . . 10
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
11 | 10 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
12 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐴) =
(Base‘𝐴) |
13 | | simpllr 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓(𝐴 Func 𝐶)𝑔) |
14 | 12, 7, 13 | funcf1 17372 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) |
15 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
16 | 14, 15 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓‘𝑥) ∈ (Base‘𝐶)) |
17 | | simpr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
18 | 14, 17 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓‘𝑦) ∈ (Base‘𝐶)) |
19 | 7, 8, 9, 11, 16, 18 | homfeqval 17200 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))) |
20 | 19 | eqeq2d 2748 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) |
21 | 6, 20 | raleqbidva 3331 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) |
22 | 5, 21 | raleqbidva 3331 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓(𝐴 Func 𝐶)𝑔) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) |
23 | 22 | pm5.32da 582 |
. . . 4
⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))))) |
24 | | fullpropd.2 |
. . . . . . 7
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
25 | | fullpropd.4 |
. . . . . . 7
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
26 | | fullpropd.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
27 | | fullpropd.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
28 | | fullpropd.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
29 | | fullpropd.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
30 | 3, 24, 10, 25, 26, 27, 28, 29 | funcpropd 17407 |
. . . . . 6
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
31 | 30 | breqd 5064 |
. . . . 5
⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
32 | 31 | anbi1d 633 |
. . . 4
⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))))) |
33 | 23, 32 | bitrd 282 |
. . 3
⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦))))) |
34 | 12, 8 | isfull 17417 |
. . 3
⊢ (𝑓(𝐴 Full 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)))) |
35 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐵) =
(Base‘𝐵) |
36 | 35, 9 | isfull 17417 |
. . 3
⊢ (𝑓(𝐵 Full 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝐷)(𝑓‘𝑦)))) |
37 | 33, 34, 36 | 3bitr4g 317 |
. 2
⊢ (𝜑 → (𝑓(𝐴 Full 𝐶)𝑔 ↔ 𝑓(𝐵 Full 𝐷)𝑔)) |
38 | 1, 2, 37 | eqbrrdiv 5664 |
1
⊢ (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷)) |