Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvres | Structured version Visualization version GIF version |
Description: Restriction of a derivative. Note that our definition of derivative df-dv 24566 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvres.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
Ref | Expression |
---|---|
dvres | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldv 24569 | . 2 ⊢ Rel (𝑆 D (𝐹 ↾ 𝐵)) | |
2 | relres 5852 | . 2 ⊢ Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)) | |
3 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝑆 ⊆ ℂ) | |
4 | simplr 768 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐹:𝐴⟶ℂ) | |
5 | inss1 4133 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
6 | fssres 6529 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) | |
7 | 4, 5, 6 | sylancl 589 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) |
8 | resres 5836 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵)) | |
9 | ffn 6498 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
10 | fnresdm 6449 | . . . . . . . . . . 11 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
11 | 4, 9, 10 | 3syl 18 | . . . . . . . . . 10 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐴) = 𝐹) |
12 | 11 | reseq1d 5822 | . . . . . . . . 9 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
13 | 8, 12 | syl5eqr 2807 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
14 | 13 | feq1d 6483 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ ↔ (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ)) |
15 | 7, 14 | mpbid 235 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) |
16 | simprl 770 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐴 ⊆ 𝑆) | |
17 | 5, 16 | sstrid 3903 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐴 ∩ 𝐵) ⊆ 𝑆) |
18 | 3, 15, 17 | dvcl 24598 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦) → 𝑦 ∈ ℂ) |
19 | 18 | ex 416 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 → 𝑦 ∈ ℂ)) |
20 | 3, 4, 16 | dvcl 24598 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
21 | 20 | ex 416 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
22 | 21 | adantld 494 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)) |
23 | dvres.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
24 | dvres.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
25 | eqid 2758 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
26 | 3 | adantr 484 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ) |
27 | 4 | adantr 484 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ) |
28 | 16 | adantr 484 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴 ⊆ 𝑆) |
29 | simplrr 777 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵 ⊆ 𝑆) | |
30 | simpr 488 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
31 | 23, 24, 25, 26, 27, 28, 29, 30 | dvreslem 24608 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
32 | 31 | ex 416 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))) |
33 | 19, 22, 32 | pm5.21ndd 384 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
34 | vex 3413 | . . . 4 ⊢ 𝑦 ∈ V | |
35 | 34 | brresi 5832 | . . 3 ⊢ (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
36 | 33, 35 | bitr4di 292 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ 𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦)) |
37 | 1, 2, 36 | eqbrrdiv 5636 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∖ cdif 3855 ∩ cin 3857 ⊆ wss 3858 {csn 4522 class class class wbr 5032 ↦ cmpt 5112 ↾ cres 5526 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 − cmin 10908 / cdiv 11335 ↾t crest 16752 TopOpenctopn 16753 ℂfldccnfld 20166 intcnt 21717 D cdv 24562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fi 8908 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-fz 12940 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-rest 16754 df-topn 16755 df-topgen 16775 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-cnp 21928 df-xms 23022 df-ms 23023 df-limc 24565 df-dv 24566 |
This theorem is referenced by: dvmptresicc 24615 dvcmulf 24644 dvmptres2 24661 dvmptntr 24670 dvlip 24692 dvlipcn 24693 dvlip2 24694 c1liplem1 24695 dvgt0lem1 24701 dvne0 24710 lhop1lem 24712 lhop 24715 dvcnvrelem1 24716 dvcvx 24719 ftc2ditglem 24744 pserdv 25123 efcvx 25143 dvlog 25341 dvlog2 25343 ftc2re 32097 dvresntr 42926 dvresioo 42929 dvbdfbdioolem1 42936 itgcoscmulx 42977 itgiccshift 42988 itgperiod 42989 dirkercncflem2 43112 fourierdlem57 43171 fourierdlem58 43172 fourierdlem72 43186 fourierdlem73 43187 fourierdlem74 43188 fourierdlem75 43189 fourierdlem80 43194 fourierdlem94 43208 fourierdlem103 43217 fourierdlem104 43218 fourierdlem113 43227 |
Copyright terms: Public domain | W3C validator |