Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvres | Structured version Visualization version GIF version |
Description: Restriction of a derivative. Note that our definition of derivative df-dv 25031 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvres.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
Ref | Expression |
---|---|
dvres | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldv 25034 | . 2 ⊢ Rel (𝑆 D (𝐹 ↾ 𝐵)) | |
2 | relres 5920 | . 2 ⊢ Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)) | |
3 | simpll 764 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝑆 ⊆ ℂ) | |
4 | simplr 766 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐹:𝐴⟶ℂ) | |
5 | inss1 4162 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
6 | fssres 6640 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) | |
7 | 4, 5, 6 | sylancl 586 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) |
8 | resres 5904 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵)) | |
9 | ffn 6600 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
10 | fnresdm 6551 | . . . . . . . . . . 11 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
11 | 4, 9, 10 | 3syl 18 | . . . . . . . . . 10 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐴) = 𝐹) |
12 | 11 | reseq1d 5890 | . . . . . . . . 9 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
13 | 8, 12 | eqtr3id 2792 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
14 | 13 | feq1d 6585 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ ↔ (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ)) |
15 | 7, 14 | mpbid 231 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) |
16 | simprl 768 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐴 ⊆ 𝑆) | |
17 | 5, 16 | sstrid 3932 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐴 ∩ 𝐵) ⊆ 𝑆) |
18 | 3, 15, 17 | dvcl 25063 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦) → 𝑦 ∈ ℂ) |
19 | 18 | ex 413 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 → 𝑦 ∈ ℂ)) |
20 | 3, 4, 16 | dvcl 25063 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
21 | 20 | ex 413 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
22 | 21 | adantld 491 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)) |
23 | dvres.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
24 | dvres.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
25 | eqid 2738 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
26 | 3 | adantr 481 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ) |
27 | 4 | adantr 481 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ) |
28 | 16 | adantr 481 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴 ⊆ 𝑆) |
29 | simplrr 775 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵 ⊆ 𝑆) | |
30 | simpr 485 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
31 | 23, 24, 25, 26, 27, 28, 29, 30 | dvreslem 25073 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
32 | 31 | ex 413 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))) |
33 | 19, 22, 32 | pm5.21ndd 381 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
34 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
35 | 34 | brresi 5900 | . . 3 ⊢ (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
36 | 33, 35 | bitr4di 289 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ 𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦)) |
37 | 1, 2, 36 | eqbrrdiv 5704 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 − cmin 11205 / cdiv 11632 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 intcnt 22168 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-cnp 22379 df-xms 23473 df-ms 23474 df-limc 25030 df-dv 25031 |
This theorem is referenced by: dvmptresicc 25080 dvcmulf 25109 dvmptres2 25126 dvmptntr 25135 dvlip 25157 dvlipcn 25158 dvlip2 25159 c1liplem1 25160 dvgt0lem1 25166 dvne0 25175 lhop1lem 25177 lhop 25180 dvcnvrelem1 25181 dvcvx 25184 ftc2ditglem 25209 pserdv 25588 efcvx 25608 dvlog 25806 dvlog2 25808 ftc2re 32578 dvresntr 43459 dvresioo 43462 dvbdfbdioolem1 43469 itgcoscmulx 43510 itgiccshift 43521 itgperiod 43522 dirkercncflem2 43645 fourierdlem57 43704 fourierdlem58 43705 fourierdlem72 43719 fourierdlem73 43720 fourierdlem74 43721 fourierdlem75 43722 fourierdlem80 43727 fourierdlem94 43741 fourierdlem103 43750 fourierdlem104 43751 fourierdlem113 43760 |
Copyright terms: Public domain | W3C validator |