MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres Structured version   Visualization version   GIF version

Theorem dvres 25764
Description: Restriction of a derivative. Note that our definition of derivative df-dv 25720 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
Assertion
Ref Expression
dvres (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))

Proof of Theorem dvres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldv 25723 . 2 Rel (𝑆 D (𝐹𝐵))
2 relres 6001 . 2 Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))
3 simpll 764 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝑆 ⊆ ℂ)
4 simplr 766 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐹:𝐴⟶ℂ)
5 inss1 4221 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
6 fssres 6748 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
74, 5, 6sylancl 585 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
8 resres 5985 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
9 ffn 6708 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
10 fnresdm 6660 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
114, 9, 103syl 18 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐴) = 𝐹)
1211reseq1d 5971 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹𝐴) ↾ 𝐵) = (𝐹𝐵))
138, 12eqtr3id 2778 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1413feq1d 6693 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ ↔ (𝐹𝐵):(𝐴𝐵)⟶ℂ))
157, 14mpbid 231 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
16 simprl 768 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
175, 16sstrid 3986 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐵) ⊆ 𝑆)
183, 15, 17dvcl 25752 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D (𝐹𝐵))𝑦) → 𝑦 ∈ ℂ)
1918ex 412 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑦 ∈ ℂ))
203, 4, 16dvcl 25752 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
2120ex 412 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
2221adantld 490 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ))
23 dvres.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
24 dvres.t . . . . . 6 𝑇 = (𝐾t 𝑆)
25 eqid 2724 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
263adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ)
274adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ)
2816adantr 480 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴𝑆)
29 simplrr 775 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵𝑆)
30 simpr 484 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3123, 24, 25, 26, 27, 28, 29, 30dvreslem 25762 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
3231ex 412 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))))
3319, 22, 32pm5.21ndd 379 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
34 vex 3470 . . . 4 𝑦 ∈ V
3534brresi 5981 . . 3 (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))
3633, 35bitr4di 289 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦))
371, 2, 36eqbrrdiv 5785 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cdif 3938  cin 3940  wss 3941  {csn 4621   class class class wbr 5139  cmpt 5222  cres 5669   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cmin 11442   / cdiv 11869  t crest 17367  TopOpenctopn 17368  fldccnfld 21230  intcnt 22845   D cdv 25716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-fz 13483  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-mulr 17212  df-starv 17213  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-rest 17369  df-topn 17370  df-topgen 17390  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-cnp 23056  df-xms 24150  df-ms 24151  df-limc 25719  df-dv 25720
This theorem is referenced by:  dvmptresicc  25769  dvcmulf  25800  dvmptres2  25818  dvmptntr  25827  dvlip  25850  dvlipcn  25851  dvlip2  25852  c1liplem1  25853  dvgt0lem1  25859  dvne0  25868  lhop1lem  25870  lhop  25873  dvcnvrelem1  25874  dvcvx  25877  ftc2ditglem  25904  pserdv  26285  efcvx  26305  dvlog  26504  dvlog2  26506  ftc2re  34101  dvresntr  45144  dvresioo  45147  dvbdfbdioolem1  45154  itgcoscmulx  45195  itgiccshift  45206  itgperiod  45207  dirkercncflem2  45330  fourierdlem57  45389  fourierdlem58  45390  fourierdlem72  45404  fourierdlem73  45405  fourierdlem74  45406  fourierdlem75  45407  fourierdlem80  45412  fourierdlem94  45426  fourierdlem103  45435  fourierdlem104  45436  fourierdlem113  45445
  Copyright terms: Public domain W3C validator