| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvres | Structured version Visualization version GIF version | ||
| Description: Restriction of a derivative. Note that our definition of derivative df-dv 25857 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvres.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
| Ref | Expression |
|---|---|
| dvres | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldv 25860 | . 2 ⊢ Rel (𝑆 D (𝐹 ↾ 𝐵)) | |
| 2 | relres 6005 | . 2 ⊢ Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)) | |
| 3 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝑆 ⊆ ℂ) | |
| 4 | simplr 768 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐹:𝐴⟶ℂ) | |
| 5 | inss1 4219 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 6 | fssres 6755 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ) |
| 8 | resres 5992 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴 ∩ 𝐵)) | |
| 9 | ffn 6717 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
| 10 | fnresdm 6668 | . . . . . . . . . . 11 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 11 | 4, 9, 10 | 3syl 18 | . . . . . . . . . 10 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐴) = 𝐹) |
| 12 | 11 | reseq1d 5978 | . . . . . . . . 9 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ 𝐴) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
| 13 | 8, 12 | eqtr3id 2783 | . . . . . . . 8 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
| 14 | 13 | feq1d 6701 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶ℂ ↔ (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ)) |
| 15 | 7, 14 | mpbid 232 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐹 ↾ 𝐵):(𝐴 ∩ 𝐵)⟶ℂ) |
| 16 | simprl 770 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → 𝐴 ⊆ 𝑆) | |
| 17 | 5, 16 | sstrid 3977 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝐴 ∩ 𝐵) ⊆ 𝑆) |
| 18 | 3, 15, 17 | dvcl 25889 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦) → 𝑦 ∈ ℂ) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 → 𝑦 ∈ ℂ)) |
| 20 | 3, 4, 16 | dvcl 25889 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D 𝐹)𝑦 → 𝑦 ∈ ℂ)) |
| 22 | 21 | adantld 490 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)) |
| 23 | dvres.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 24 | dvres.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
| 25 | eqid 2734 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | |
| 26 | 3 | adantr 480 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ) |
| 27 | 4 | adantr 480 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ) |
| 28 | 16 | adantr 480 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴 ⊆ 𝑆) |
| 29 | simplrr 777 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵 ⊆ 𝑆) | |
| 30 | simpr 484 | . . . . . 6 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 31 | 23, 24, 25, 26, 27, 28, 29, 30 | dvreslem 25899 | . . . . 5 ⊢ ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
| 32 | 31 | ex 412 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))) |
| 33 | 19, 22, 32 | pm5.21ndd 379 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦))) |
| 34 | vex 3468 | . . . 4 ⊢ 𝑦 ∈ V | |
| 35 | 34 | brresi 5988 | . . 3 ⊢ (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)) |
| 36 | 33, 35 | bitr4di 289 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ 𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦)) |
| 37 | 1, 2, 36 | eqbrrdiv 5786 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 {csn 4608 class class class wbr 5125 ↦ cmpt 5207 ↾ cres 5669 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 − cmin 11475 / cdiv 11903 ↾t crest 17441 TopOpenctopn 17442 ℂfldccnfld 21331 intcnt 22990 D cdv 25853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fi 9434 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-fz 13531 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-mulr 17291 df-starv 17292 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-rest 17443 df-topn 17444 df-topgen 17464 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-cnp 23201 df-xms 24294 df-ms 24295 df-limc 25856 df-dv 25857 |
| This theorem is referenced by: dvmptresicc 25906 dvcmulf 25937 dvmptres2 25955 dvmptntr 25964 dvlip 25987 dvlipcn 25988 dvlip2 25989 c1liplem1 25990 dvgt0lem1 25996 dvne0 26005 lhop1lem 26007 lhop 26010 dvcnvrelem1 26011 dvcvx 26014 ftc2ditglem 26041 pserdv 26428 efcvx 26448 dvlog 26648 dvlog2 26650 ftc2re 34554 dvun 42334 dvresntr 45878 dvresioo 45881 dvbdfbdioolem1 45888 itgcoscmulx 45929 itgiccshift 45940 itgperiod 45941 dirkercncflem2 46064 fourierdlem57 46123 fourierdlem58 46124 fourierdlem72 46138 fourierdlem73 46139 fourierdlem74 46140 fourierdlem75 46141 fourierdlem80 46146 fourierdlem94 46160 fourierdlem103 46169 fourierdlem104 46170 fourierdlem113 46179 |
| Copyright terms: Public domain | W3C validator |