![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrelrdv | Structured version Visualization version GIF version |
Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqrelrdv.1 | ⊢ Rel 𝐴 |
eqrelrdv.2 | ⊢ Rel 𝐵 |
eqrelrdv.3 | ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrdv.3 | . . 3 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | alrimivv 1930 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | eqrelrdv.1 | . . 3 ⊢ Rel 𝐴 | |
4 | eqrelrdv.2 | . . 3 ⊢ Rel 𝐵 | |
5 | eqrel 5784 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))) | |
6 | 3, 4, 5 | mp2an 689 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | 2, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: eqbrrdiv 5794 fcnvres 6768 fmptco 7129 fpwwe2lem7 10635 fpwwe2lem11 10639 fsumcom2 15725 fprodcom2 15933 gsumcom2 19885 lgsquadlem1 27120 lgsquadlem2 27121 fmptcof2 32150 dfcnv2 32169 dih1dimatlem 40504 |
Copyright terms: Public domain | W3C validator |