Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqrelrdv | Structured version Visualization version GIF version |
Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqrelrdv.1 | ⊢ Rel 𝐴 |
eqrelrdv.2 | ⊢ Rel 𝐵 |
eqrelrdv.3 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrdv.3 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | alrimivv 1934 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | eqrelrdv.1 | . . 3 ⊢ Rel 𝐴 | |
4 | eqrelrdv.2 | . . 3 ⊢ Rel 𝐵 | |
5 | eqrel 5692 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
6 | 3, 4, 5 | mp2an 688 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | 2, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2109 〈cop 4572 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: eqbrrdiv 5701 fcnvres 6647 fmptco 6995 fpwwe2lem7 10377 fpwwe2lem11 10381 fsumcom2 15467 fprodcom2 15675 gsumcom2 19557 lgsquadlem1 26509 lgsquadlem2 26510 fmptcof2 30973 dfcnv2 30992 dih1dimatlem 39322 |
Copyright terms: Public domain | W3C validator |