MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrdv Structured version   Visualization version   GIF version

Theorem eqrelrdv 5714
Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqrelrdv.1 Rel 𝐴
eqrelrdv.2 Rel 𝐵
eqrelrdv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
eqrelrdv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqrelrdv
StepHypRef Expression
1 eqrelrdv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1929 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 eqrelrdv.1 . . 3 Rel 𝐴
4 eqrelrdv.2 . . 3 Rel 𝐵
5 eqrel 5706 . . 3 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
63, 4, 5mp2an 690 . 2 (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
72, 6sylibr 233 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2104  cop 4571  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-in 3899  df-ss 3909  df-opab 5144  df-xp 5606  df-rel 5607
This theorem is referenced by:  eqbrrdiv  5716  fcnvres  6681  fmptco  7033  fpwwe2lem7  10439  fpwwe2lem11  10443  fsumcom2  15531  fprodcom2  15739  gsumcom2  19621  lgsquadlem1  26573  lgsquadlem2  26574  fmptcof2  31039  dfcnv2  31058  dih1dimatlem  39385
  Copyright terms: Public domain W3C validator