![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrelrdv | Structured version Visualization version GIF version |
Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
Ref | Expression |
---|---|
eqrelrdv.1 | ⊢ Rel 𝐴 |
eqrelrdv.2 | ⊢ Rel 𝐵 |
eqrelrdv.3 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrdv.3 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | eqrelrdv.1 | . . 3 ⊢ Rel 𝐴 | |
4 | eqrelrdv.2 | . . 3 ⊢ Rel 𝐵 | |
5 | eqrel 5808 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
6 | 3, 4, 5 | mp2an 691 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | 2, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 〈cop 4654 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: eqbrrdiv 5818 fcnvres 6798 fmptco 7163 fpwwe2lem7 10706 fpwwe2lem11 10710 fsumcom2 15822 fprodcom2 16032 gsumcom2 20017 lgsquadlem1 27442 lgsquadlem2 27443 fmptcof2 32675 dfcnv2 32694 dih1dimatlem 41286 |
Copyright terms: Public domain | W3C validator |