MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrdv Structured version   Visualization version   GIF version

Theorem eqrelrdv 5776
Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqrelrdv.1 Rel 𝐴
eqrelrdv.2 Rel 𝐵
eqrelrdv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Assertion
Ref Expression
eqrelrdv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqrelrdv
StepHypRef Expression
1 eqrelrdv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 eqrelrdv.1 . . 3 Rel 𝐴
4 eqrelrdv.2 . . 3 Rel 𝐵
5 eqrel 5768 . . 3 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
63, 4, 5mp2an 692 . 2 (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
72, 6sylibr 234 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  cop 4612  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-opab 5187  df-xp 5665  df-rel 5666
This theorem is referenced by:  eqbrrdiv  5778  fcnvres  6760  fmptco  7124  fpwwe2lem7  10656  fpwwe2lem11  10660  fsumcom2  15795  fprodcom2  16005  gsumcom2  19961  lgsquadlem1  27348  lgsquadlem2  27349  fmptcof2  32640  dfcnv2  32659  dih1dimatlem  41353
  Copyright terms: Public domain W3C validator