MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdv Structured version   Visualization version   GIF version

Theorem eqbrrdv 5700
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
eqbrrdv.1 (𝜑 → Rel 𝐴)
eqbrrdv.2 (𝜑 → Rel 𝐵)
eqbrrdv.3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqbrrdv
StepHypRef Expression
1 eqbrrdv.3 . . . 4 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
2 df-br 5079 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3 df-br 5079 . . . 4 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
41, 2, 33bitr3g 312 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54alrimivv 1934 . 2 (𝜑 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
6 eqbrrdv.1 . . 3 (𝜑 → Rel 𝐴)
7 eqbrrdv.2 . . 3 (𝜑 → Rel 𝐵)
8 eqrel 5692 . . 3 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
96, 7, 8syl2anc 583 . 2 (𝜑 → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
105, 9mpbird 256 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2109  cop 4572   class class class wbr 5078  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595
This theorem is referenced by:  eqbrrdva  5775  oppcsect2  17472  qusxpid  31538  erim2  36768
  Copyright terms: Public domain W3C validator