Step | Hyp | Ref
| Expression |
1 | | relres 5920 |
. 2
⊢ Rel
(𝐹 ↾ (𝑋 ∪ {𝑌})) |
2 | | relres 5920 |
. 2
⊢ Rel
(𝐺 ↾ (𝑋 ∪ {𝑌})) |
3 | | breq 5076 |
. . . . 5
⊢ ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) → (𝑥(𝐹 ↾ 𝑋)𝑦 ↔ 𝑥(𝐺 ↾ 𝑋)𝑦)) |
4 | 3 | 3ad2ant2 1133 |
. . . 4
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ 𝑋)𝑦 ↔ 𝑥(𝐺 ↾ 𝑋)𝑦)) |
5 | | velsn 4577 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) |
6 | | simp33 1210 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹‘𝑌) = (𝐺‘𝑌)) |
7 | 6 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐹‘𝑌) = 𝑦 ↔ (𝐺‘𝑌) = 𝑦)) |
8 | | simp1l 1196 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → Fun 𝐹) |
9 | | simp31 1208 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → 𝑌 ∈ dom 𝐹) |
10 | | funbrfvb 6824 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑌 ∈ dom 𝐹) → ((𝐹‘𝑌) = 𝑦 ↔ 𝑌𝐹𝑦)) |
11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐹‘𝑌) = 𝑦 ↔ 𝑌𝐹𝑦)) |
12 | | simp1r 1197 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → Fun 𝐺) |
13 | | simp32 1209 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → 𝑌 ∈ dom 𝐺) |
14 | | funbrfvb 6824 |
. . . . . . . . . 10
⊢ ((Fun
𝐺 ∧ 𝑌 ∈ dom 𝐺) → ((𝐺‘𝑌) = 𝑦 ↔ 𝑌𝐺𝑦)) |
15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐺‘𝑌) = 𝑦 ↔ 𝑌𝐺𝑦)) |
16 | 7, 11, 15 | 3bitr3d 309 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑌𝐹𝑦 ↔ 𝑌𝐺𝑦)) |
17 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (𝑥𝐹𝑦 ↔ 𝑌𝐹𝑦)) |
18 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (𝑥𝐺𝑦 ↔ 𝑌𝐺𝑦)) |
19 | 17, 18 | bibi12d 346 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → ((𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦 ↔ 𝑌𝐺𝑦))) |
20 | 16, 19 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦))) |
21 | 5, 20 | syl5bi 241 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦))) |
22 | 21 | pm5.32d 577 |
. . . . 5
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦))) |
23 | | vex 3436 |
. . . . . 6
⊢ 𝑦 ∈ V |
24 | 23 | brresi 5900 |
. . . . 5
⊢ (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦)) |
25 | 23 | brresi 5900 |
. . . . 5
⊢ (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦)) |
26 | 22, 24, 25 | 3bitr4g 314 |
. . . 4
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
27 | 4, 26 | orbi12d 916 |
. . 3
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦))) |
28 | | resundi 5905 |
. . . . 5
⊢ (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌})) |
29 | 28 | breqi 5080 |
. . . 4
⊢ (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦) |
30 | | brun 5125 |
. . . 4
⊢ (𝑥((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦)) |
31 | 29, 30 | bitri 274 |
. . 3
⊢ (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦)) |
32 | | resundi 5905 |
. . . . 5
⊢ (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌})) |
33 | 32 | breqi 5080 |
. . . 4
⊢ (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦) |
34 | | brun 5125 |
. . . 4
⊢ (𝑥((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
35 | 33, 34 | bitri 274 |
. . 3
⊢ (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
36 | 27, 31, 35 | 3bitr4g 314 |
. 2
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦)) |
37 | 1, 2, 36 | eqbrrdiv 5704 |
1
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌}))) |