MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunresadj Structured version   Visualization version   GIF version

Theorem eqfunresadj 7396
Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunresadj (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))

Proof of Theorem eqfunresadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6035 . 2 Rel (𝐹 ↾ (𝑋 ∪ {𝑌}))
2 relres 6035 . 2 Rel (𝐺 ↾ (𝑋 ∪ {𝑌}))
3 breq 5168 . . . . 5 ((𝐹𝑋) = (𝐺𝑋) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
433ad2ant2 1134 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
5 velsn 4664 . . . . . . 7 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
6 simp33 1211 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹𝑌) = (𝐺𝑌))
76eqeq1d 2742 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦 ↔ (𝐺𝑌) = 𝑦))
8 simp1l 1197 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐹)
9 simp31 1209 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐹)
10 funbrfvb 6975 . . . . . . . . . 10 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
118, 9, 10syl2anc 583 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
12 simp1r 1198 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐺)
13 simp32 1210 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐺)
14 funbrfvb 6975 . . . . . . . . . 10 ((Fun 𝐺𝑌 ∈ dom 𝐺) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
1512, 13, 14syl2anc 583 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
167, 11, 153bitr3d 309 . . . . . . . 8 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑌𝐹𝑦𝑌𝐺𝑦))
17 breq1 5169 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑌𝐹𝑦))
18 breq1 5169 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐺𝑦𝑌𝐺𝑦))
1917, 18bibi12d 345 . . . . . . . 8 (𝑥 = 𝑌 → ((𝑥𝐹𝑦𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦𝑌𝐺𝑦)))
2016, 19syl5ibrcom 247 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑥𝐺𝑦)))
215, 20biimtrid 242 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦𝑥𝐺𝑦)))
2221pm5.32d 576 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦)))
23 vex 3492 . . . . . 6 𝑦 ∈ V
2423brresi 6018 . . . . 5 (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦))
2523brresi 6018 . . . . 5 (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦))
2622, 24, 253bitr4g 314 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
274, 26orbi12d 917 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦)))
28 resundi 6023 . . . . 5 (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))
2928breqi 5172 . . . 4 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦)
30 brun 5217 . . . 4 (𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
3129, 30bitri 275 . . 3 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
32 resundi 6023 . . . . 5 (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))
3332breqi 5172 . . . 4 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦)
34 brun 5217 . . . 4 (𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3533, 34bitri 275 . . 3 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3627, 31, 353bitr4g 314 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦))
371, 2, 36eqbrrdiv 5818 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cun 3974  {csn 4648   class class class wbr 5166  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  eqfunressuc  7397
  Copyright terms: Public domain W3C validator