MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfunresadj Structured version   Visualization version   GIF version

Theorem eqfunresadj 7294
Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunresadj (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))

Proof of Theorem eqfunresadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5953 . 2 Rel (𝐹 ↾ (𝑋 ∪ {𝑌}))
2 relres 5953 . 2 Rel (𝐺 ↾ (𝑋 ∪ {𝑌}))
3 breq 5091 . . . . 5 ((𝐹𝑋) = (𝐺𝑋) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
433ad2ant2 1134 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
5 velsn 4589 . . . . . . 7 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
6 simp33 1212 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹𝑌) = (𝐺𝑌))
76eqeq1d 2733 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦 ↔ (𝐺𝑌) = 𝑦))
8 simp1l 1198 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐹)
9 simp31 1210 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐹)
10 funbrfvb 6875 . . . . . . . . . 10 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
118, 9, 10syl2anc 584 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
12 simp1r 1199 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐺)
13 simp32 1211 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐺)
14 funbrfvb 6875 . . . . . . . . . 10 ((Fun 𝐺𝑌 ∈ dom 𝐺) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
1512, 13, 14syl2anc 584 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
167, 11, 153bitr3d 309 . . . . . . . 8 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑌𝐹𝑦𝑌𝐺𝑦))
17 breq1 5092 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑌𝐹𝑦))
18 breq1 5092 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐺𝑦𝑌𝐺𝑦))
1917, 18bibi12d 345 . . . . . . . 8 (𝑥 = 𝑌 → ((𝑥𝐹𝑦𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦𝑌𝐺𝑦)))
2016, 19syl5ibrcom 247 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑥𝐺𝑦)))
215, 20biimtrid 242 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦𝑥𝐺𝑦)))
2221pm5.32d 577 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦)))
23 vex 3440 . . . . . 6 𝑦 ∈ V
2423brresi 5936 . . . . 5 (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦))
2523brresi 5936 . . . . 5 (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦))
2622, 24, 253bitr4g 314 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
274, 26orbi12d 918 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦)))
28 resundi 5941 . . . . 5 (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))
2928breqi 5095 . . . 4 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦)
30 brun 5140 . . . 4 (𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
3129, 30bitri 275 . . 3 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
32 resundi 5941 . . . . 5 (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))
3332breqi 5095 . . . 4 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦)
34 brun 5140 . . . 4 (𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3533, 34bitri 275 . . 3 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3627, 31, 353bitr4g 314 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦))
371, 2, 36eqbrrdiv 5733 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cun 3895  {csn 4573   class class class wbr 5089  dom cdm 5614  cres 5616  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  eqfunressuc  7295
  Copyright terms: Public domain W3C validator