| Step | Hyp | Ref
| Expression |
| 1 | | relres 6023 |
. 2
⊢ Rel
(𝐹 ↾ (𝑋 ∪ {𝑌})) |
| 2 | | relres 6023 |
. 2
⊢ Rel
(𝐺 ↾ (𝑋 ∪ {𝑌})) |
| 3 | | breq 5145 |
. . . . 5
⊢ ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) → (𝑥(𝐹 ↾ 𝑋)𝑦 ↔ 𝑥(𝐺 ↾ 𝑋)𝑦)) |
| 4 | 3 | 3ad2ant2 1135 |
. . . 4
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ 𝑋)𝑦 ↔ 𝑥(𝐺 ↾ 𝑋)𝑦)) |
| 5 | | velsn 4642 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) |
| 6 | | simp33 1212 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹‘𝑌) = (𝐺‘𝑌)) |
| 7 | 6 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐹‘𝑌) = 𝑦 ↔ (𝐺‘𝑌) = 𝑦)) |
| 8 | | simp1l 1198 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → Fun 𝐹) |
| 9 | | simp31 1210 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → 𝑌 ∈ dom 𝐹) |
| 10 | | funbrfvb 6962 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑌 ∈ dom 𝐹) → ((𝐹‘𝑌) = 𝑦 ↔ 𝑌𝐹𝑦)) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐹‘𝑌) = 𝑦 ↔ 𝑌𝐹𝑦)) |
| 12 | | simp1r 1199 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → Fun 𝐺) |
| 13 | | simp32 1211 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → 𝑌 ∈ dom 𝐺) |
| 14 | | funbrfvb 6962 |
. . . . . . . . . 10
⊢ ((Fun
𝐺 ∧ 𝑌 ∈ dom 𝐺) → ((𝐺‘𝑌) = 𝑦 ↔ 𝑌𝐺𝑦)) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝐺‘𝑌) = 𝑦 ↔ 𝑌𝐺𝑦)) |
| 16 | 7, 11, 15 | 3bitr3d 309 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑌𝐹𝑦 ↔ 𝑌𝐺𝑦)) |
| 17 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (𝑥𝐹𝑦 ↔ 𝑌𝐹𝑦)) |
| 18 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (𝑥𝐺𝑦 ↔ 𝑌𝐺𝑦)) |
| 19 | 17, 18 | bibi12d 345 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → ((𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦 ↔ 𝑌𝐺𝑦))) |
| 20 | 16, 19 | syl5ibrcom 247 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦))) |
| 21 | 5, 20 | biimtrid 242 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦 ↔ 𝑥𝐺𝑦))) |
| 22 | 21 | pm5.32d 577 |
. . . . 5
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦))) |
| 23 | | vex 3484 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 24 | 23 | brresi 6006 |
. . . . 5
⊢ (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦)) |
| 25 | 23 | brresi 6006 |
. . . . 5
⊢ (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦)) |
| 26 | 22, 24, 25 | 3bitr4g 314 |
. . . 4
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
| 27 | 4, 26 | orbi12d 919 |
. . 3
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → ((𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦))) |
| 28 | | resundi 6011 |
. . . . 5
⊢ (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌})) |
| 29 | 28 | breqi 5149 |
. . . 4
⊢ (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦) |
| 30 | | brun 5194 |
. . . 4
⊢ (𝑥((𝐹 ↾ 𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦)) |
| 31 | 29, 30 | bitri 275 |
. . 3
⊢ (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹 ↾ 𝑋)𝑦 ∨ 𝑥(𝐹 ↾ {𝑌})𝑦)) |
| 32 | | resundi 6011 |
. . . . 5
⊢ (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌})) |
| 33 | 32 | breqi 5149 |
. . . 4
⊢ (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦) |
| 34 | | brun 5194 |
. . . 4
⊢ (𝑥((𝐺 ↾ 𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
| 35 | 33, 34 | bitri 275 |
. . 3
⊢ (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺 ↾ 𝑋)𝑦 ∨ 𝑥(𝐺 ↾ {𝑌})𝑦)) |
| 36 | 27, 31, 35 | 3bitr4g 314 |
. 2
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ 𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦)) |
| 37 | 1, 2, 36 | eqbrrdiv 5804 |
1
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌}))) |