| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fullpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| fullpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| fullpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| fullpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| fullpropd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fullpropd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fullpropd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| fullpropd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fthpropd | ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfth 17815 | . 2 ⊢ Rel (𝐴 Faith 𝐶) | |
| 2 | relfth 17815 | . 2 ⊢ Rel (𝐵 Faith 𝐷) | |
| 3 | fullpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 4 | fullpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 5 | fullpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 6 | fullpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 7 | fullpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | fullpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 9 | fullpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | fullpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | funcpropd 17806 | . . . . 5 ⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 12 | 11 | breqd 5102 | . . . 4 ⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
| 13 | 3 | homfeqbas 17599 | . . . . 5 ⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 14 | 13 | raleqdv 3292 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 15 | 13, 14 | raleqbidv 3312 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 16 | 12, 15 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦)))) |
| 17 | eqid 2731 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 18 | 17 | isfth 17820 | . . 3 ⊢ (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦))) |
| 19 | eqid 2731 | . . . 4 ⊢ (Base‘𝐵) = (Base‘𝐵) | |
| 20 | 19 | isfth 17820 | . . 3 ⊢ (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 21 | 16, 18, 20 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔 ↔ 𝑓(𝐵 Faith 𝐷)𝑔)) |
| 22 | 1, 2, 21 | eqbrrdiv 5734 | 1 ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ◡ccnv 5615 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Homf chomf 17569 compfccomf 17570 Func cfunc 17758 Faith cfth 17809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17571 df-cid 17572 df-homf 17573 df-comf 17574 df-func 17762 df-fth 17811 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |