| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fullpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| fullpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| fullpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| fullpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| fullpropd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fullpropd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fullpropd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| fullpropd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fthpropd | ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfth 17820 | . 2 ⊢ Rel (𝐴 Faith 𝐶) | |
| 2 | relfth 17820 | . 2 ⊢ Rel (𝐵 Faith 𝐷) | |
| 3 | fullpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 4 | fullpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 5 | fullpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 6 | fullpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 7 | fullpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | fullpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 9 | fullpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | fullpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | funcpropd 17811 | . . . . 5 ⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 12 | 11 | breqd 5104 | . . . 4 ⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
| 13 | 3 | homfeqbas 17604 | . . . . 5 ⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 14 | 13 | raleqdv 3293 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 15 | 13, 14 | raleqbidv 3313 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 16 | 12, 15 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦)))) |
| 17 | eqid 2733 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 18 | 17 | isfth 17825 | . . 3 ⊢ (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦))) |
| 19 | eqid 2733 | . . . 4 ⊢ (Base‘𝐵) = (Base‘𝐵) | |
| 20 | 19 | isfth 17825 | . . 3 ⊢ (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 21 | 16, 18, 20 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔 ↔ 𝑓(𝐵 Faith 𝐷)𝑔)) |
| 22 | 1, 2, 21 | eqbrrdiv 5738 | 1 ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ◡ccnv 5618 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Homf chomf 17574 compfccomf 17575 Func cfunc 17763 Faith cfth 17814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-cat 17576 df-cid 17577 df-homf 17578 df-comf 17579 df-func 17767 df-fth 17816 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |