MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthpropd Structured version   Visualization version   GIF version

Theorem fthpropd 17941
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fthpropd (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))

Proof of Theorem fthpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 17929 . 2 Rel (𝐴 Faith 𝐶)
2 relfth 17929 . 2 Rel (𝐵 Faith 𝐷)
3 fullpropd.1 . . . . . 6 (𝜑 → (Homf𝐴) = (Homf𝐵))
4 fullpropd.2 . . . . . 6 (𝜑 → (compf𝐴) = (compf𝐵))
5 fullpropd.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
6 fullpropd.4 . . . . . 6 (𝜑 → (compf𝐶) = (compf𝐷))
7 fullpropd.a . . . . . 6 (𝜑𝐴𝑉)
8 fullpropd.b . . . . . 6 (𝜑𝐵𝑉)
9 fullpropd.c . . . . . 6 (𝜑𝐶𝑉)
10 fullpropd.d . . . . . 6 (𝜑𝐷𝑉)
113, 4, 5, 6, 7, 8, 9, 10funcpropd 17920 . . . . 5 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
1211breqd 5135 . . . 4 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
133homfeqbas 17713 . . . . 5 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
1413raleqdv 3309 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1513, 14raleqbidv 3329 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1612, 15anbi12d 632 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦))))
17 eqid 2736 . . . 4 (Base‘𝐴) = (Base‘𝐴)
1817isfth 17934 . . 3 (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)))
19 eqid 2736 . . . 4 (Base‘𝐵) = (Base‘𝐵)
2019isfth 17934 . . 3 (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
2116, 18, 203bitr4g 314 . 2 (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔𝑓(𝐵 Faith 𝐷)𝑔))
221, 2, 21eqbrrdiv 5778 1 (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  ccnv 5658  Fun wfun 6530  cfv 6536  (class class class)co 7410  Basecbs 17233  Homf chomf 17683  compfccomf 17684   Func cfunc 17872   Faith cfth 17923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-cat 17685  df-cid 17686  df-homf 17687  df-comf 17688  df-func 17876  df-fth 17925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator