| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fullpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| fullpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| fullpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| fullpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| fullpropd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fullpropd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fullpropd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| fullpropd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fthpropd | ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfth 17880 | . 2 ⊢ Rel (𝐴 Faith 𝐶) | |
| 2 | relfth 17880 | . 2 ⊢ Rel (𝐵 Faith 𝐷) | |
| 3 | fullpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 4 | fullpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 5 | fullpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 6 | fullpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 7 | fullpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | fullpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 9 | fullpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | fullpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | funcpropd 17871 | . . . . 5 ⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 12 | 11 | breqd 5121 | . . . 4 ⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
| 13 | 3 | homfeqbas 17664 | . . . . 5 ⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 14 | 13 | raleqdv 3301 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 15 | 13, 14 | raleqbidv 3321 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 16 | 12, 15 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦)))) |
| 17 | eqid 2730 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 18 | 17 | isfth 17885 | . . 3 ⊢ (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦))) |
| 19 | eqid 2730 | . . . 4 ⊢ (Base‘𝐵) = (Base‘𝐵) | |
| 20 | 19 | isfth 17885 | . . 3 ⊢ (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
| 21 | 16, 18, 20 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔 ↔ 𝑓(𝐵 Faith 𝐷)𝑔)) |
| 22 | 1, 2, 21 | eqbrrdiv 5760 | 1 ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ◡ccnv 5640 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Homf chomf 17634 compfccomf 17635 Func cfunc 17823 Faith cfth 17874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-cat 17636 df-cid 17637 df-homf 17638 df-comf 17639 df-func 17827 df-fth 17876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |