MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthpropd Structured version   Visualization version   GIF version

Theorem fthpropd 17892
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fthpropd (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))

Proof of Theorem fthpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 17880 . 2 Rel (𝐴 Faith 𝐶)
2 relfth 17880 . 2 Rel (𝐵 Faith 𝐷)
3 fullpropd.1 . . . . . 6 (𝜑 → (Homf𝐴) = (Homf𝐵))
4 fullpropd.2 . . . . . 6 (𝜑 → (compf𝐴) = (compf𝐵))
5 fullpropd.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
6 fullpropd.4 . . . . . 6 (𝜑 → (compf𝐶) = (compf𝐷))
7 fullpropd.a . . . . . 6 (𝜑𝐴𝑉)
8 fullpropd.b . . . . . 6 (𝜑𝐵𝑉)
9 fullpropd.c . . . . . 6 (𝜑𝐶𝑉)
10 fullpropd.d . . . . . 6 (𝜑𝐷𝑉)
113, 4, 5, 6, 7, 8, 9, 10funcpropd 17871 . . . . 5 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
1211breqd 5121 . . . 4 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
133homfeqbas 17664 . . . . 5 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
1413raleqdv 3301 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1513, 14raleqbidv 3321 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1612, 15anbi12d 632 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦))))
17 eqid 2730 . . . 4 (Base‘𝐴) = (Base‘𝐴)
1817isfth 17885 . . 3 (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)))
19 eqid 2730 . . . 4 (Base‘𝐵) = (Base‘𝐵)
2019isfth 17885 . . 3 (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
2116, 18, 203bitr4g 314 . 2 (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔𝑓(𝐵 Faith 𝐷)𝑔))
221, 2, 21eqbrrdiv 5760 1 (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  ccnv 5640  Fun wfun 6508  cfv 6514  (class class class)co 7390  Basecbs 17186  Homf chomf 17634  compfccomf 17635   Func cfunc 17823   Faith cfth 17874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-comf 17639  df-func 17827  df-fth 17876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator