![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthpropd | Structured version Visualization version GIF version |
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fullpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
fullpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
fullpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
fullpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
fullpropd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fullpropd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fullpropd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
fullpropd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
fthpropd | ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfth 17976 | . 2 ⊢ Rel (𝐴 Faith 𝐶) | |
2 | relfth 17976 | . 2 ⊢ Rel (𝐵 Faith 𝐷) | |
3 | fullpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
4 | fullpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
5 | fullpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
6 | fullpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
7 | fullpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | fullpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
9 | fullpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
10 | fullpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | funcpropd 17967 | . . . . 5 ⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
12 | 11 | breqd 5177 | . . . 4 ⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
13 | 3 | homfeqbas 17754 | . . . . 5 ⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
14 | 13 | raleqdv 3334 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
15 | 13, 14 | raleqbidv 3354 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
16 | 12, 15 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦)))) |
17 | eqid 2740 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
18 | 17 | isfth 17981 | . . 3 ⊢ (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun ◡(𝑥𝑔𝑦))) |
19 | eqid 2740 | . . . 4 ⊢ (Base‘𝐵) = (Base‘𝐵) | |
20 | 19 | isfth 17981 | . . 3 ⊢ (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun ◡(𝑥𝑔𝑦))) |
21 | 16, 18, 20 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔 ↔ 𝑓(𝐵 Faith 𝐷)𝑔)) |
22 | 1, 2, 21 | eqbrrdiv 5818 | 1 ⊢ (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ◡ccnv 5699 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Homf chomf 17724 compfccomf 17725 Func cfunc 17918 Faith cfth 17970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-cat 17726 df-cid 17727 df-homf 17728 df-comf 17729 df-func 17922 df-fth 17972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |