MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upxp Structured version   Visualization version   GIF version

Theorem upxp 22323
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
upxp.1 𝑃 = (1st ↾ (𝐵 × 𝐶))
upxp.2 𝑄 = (2nd ↾ (𝐵 × 𝐶))
Assertion
Ref Expression
upxp ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   𝐴,   𝐵,   𝐶,   ,𝐹   ,𝐺   𝐷,
Allowed substitution hints:   𝑃()   𝑄()

Proof of Theorem upxp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6975 . . . 4 (𝐴𝐷 → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ V)
2 eueq 3622 . . . 4 ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ V ↔ ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
31, 2sylib 221 . . 3 (𝐴𝐷 → ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
433ad2ant1 1130 . 2 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5 ffn 6498 . . . . . . . 8 (:𝐴⟶(𝐵 × 𝐶) → Fn 𝐴)
653ad2ant1 1130 . . . . . . 7 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → Fn 𝐴)
76adantl 485 . . . . . 6 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → Fn 𝐴)
8 ffvelrn 6840 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
9 ffvelrn 6840 . . . . . . . . . . . . 13 ((𝐺:𝐴𝐶𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
10 opelxpi 5561 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
118, 9, 10syl2an 598 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝑥𝐴) ∧ (𝐺:𝐴𝐶𝑥𝐴)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
1211anandirs 678 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
1312ralrimiva 3113 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
14133adant1 1127 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
15 eqid 2758 . . . . . . . . . 10 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1615fmpt 6865 . . . . . . . . 9 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶))
1714, 16sylib 221 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶))
1817ffnd 6499 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
1918adantr 484 . . . . . 6 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
20 xpss 5540 . . . . . . . . . . 11 (𝐵 × 𝐶) ⊆ (V × V)
21 ffvelrn 6840 . . . . . . . . . . 11 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
2220, 21sseldi 3890 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
23223ad2antl1 1182 . . . . . . . . 9 (((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
2423adantll 713 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
25 fveq1 6657 . . . . . . . . . . . 12 (𝐹 = (𝑃) → (𝐹𝑧) = ((𝑃)‘𝑧))
26 upxp.1 . . . . . . . . . . . . . 14 𝑃 = (1st ↾ (𝐵 × 𝐶))
2726coeq1i 5699 . . . . . . . . . . . . 13 (𝑃) = ((1st ↾ (𝐵 × 𝐶)) ∘ )
2827fveq1i 6659 . . . . . . . . . . . 12 ((𝑃)‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧)
2925, 28eqtrdi 2809 . . . . . . . . . . 11 (𝐹 = (𝑃) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
30293ad2ant2 1131 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
3130ad2antlr 726 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
32 simpr1 1191 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → :𝐴⟶(𝐵 × 𝐶))
33 fvco3 6751 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(𝑧)))
3432, 33sylan 583 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(𝑧)))
35213ad2antl1 1182 . . . . . . . . . . 11 (((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
3635adantll 713 . . . . . . . . . 10 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
3736fvresd 6678 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘(𝑧)) = (1st ‘(𝑧)))
3831, 34, 373eqtrrd 2798 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (1st ‘(𝑧)) = (𝐹𝑧))
39 fveq1 6657 . . . . . . . . . . . 12 (𝐺 = (𝑄) → (𝐺𝑧) = ((𝑄)‘𝑧))
40 upxp.2 . . . . . . . . . . . . . 14 𝑄 = (2nd ↾ (𝐵 × 𝐶))
4140coeq1i 5699 . . . . . . . . . . . . 13 (𝑄) = ((2nd ↾ (𝐵 × 𝐶)) ∘ )
4241fveq1i 6659 . . . . . . . . . . . 12 ((𝑄)‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧)
4339, 42eqtrdi 2809 . . . . . . . . . . 11 (𝐺 = (𝑄) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
44433ad2ant3 1132 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
4544ad2antlr 726 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
46 fvco3 6751 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)))
4732, 46sylan 583 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)))
4836fvresd 6678 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)) = (2nd ‘(𝑧)))
4945, 47, 483eqtrrd 2798 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (2nd ‘(𝑧)) = (𝐺𝑧))
50 eqopi 7729 . . . . . . . 8 (((𝑧) ∈ (V × V) ∧ ((1st ‘(𝑧)) = (𝐹𝑧) ∧ (2nd ‘(𝑧)) = (𝐺𝑧))) → (𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
5124, 38, 49, 50syl12anc 835 . . . . . . 7 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
52 fveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
53 fveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
5452, 53opeq12d 4771 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
55 opex 5324 . . . . . . . . 9 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
5654, 15, 55fvmpt 6759 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
5756adantl 485 . . . . . . 7 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
5851, 57eqtr4d 2796 . . . . . 6 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧))
597, 19, 58eqfnfvd 6796 . . . . 5 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
6059ex 416 . . . 4 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
61 ffn 6498 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
62613ad2ant2 1131 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 Fn 𝐴)
63 fo1st 7713 . . . . . . . . . . 11 1st :V–onto→V
64 fofn 6578 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
6563, 64ax-mp 5 . . . . . . . . . 10 1st Fn V
66 ssv 3916 . . . . . . . . . 10 (𝐵 × 𝐶) ⊆ V
67 fnssres 6453 . . . . . . . . . 10 ((1st Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
6865, 66, 67mp2an 691 . . . . . . . . 9 (1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶)
6917frnd 6505 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶))
70 fnco 6448 . . . . . . . . 9 (((1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶)) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
7168, 18, 69, 70mp3an2i 1463 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
72 fvco3 6751 . . . . . . . . . 10 (((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7317, 72sylan 583 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7456adantl 485 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
7574fveq2d 6662 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
76 ffvelrn 6840 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
77 ffvelrn 6840 . . . . . . . . . . . . . 14 ((𝐺:𝐴𝐶𝑧𝐴) → (𝐺𝑧) ∈ 𝐶)
78 opelxpi 5561 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝐵 ∧ (𝐺𝑧) ∈ 𝐶) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
7976, 77, 78syl2an 598 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑧𝐴) ∧ (𝐺:𝐴𝐶𝑧𝐴)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
8079anandirs 678 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
81803adantl1 1163 . . . . . . . . . . 11 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
8281fvresd 6678 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
83 fvex 6671 . . . . . . . . . . 11 (𝐹𝑧) ∈ V
84 fvex 6671 . . . . . . . . . . 11 (𝐺𝑧) ∈ V
8583, 84op1st 7701 . . . . . . . . . 10 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
8682, 85eqtrdi 2809 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
8773, 75, 863eqtrrd 2798 . . . . . . . 8 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
8862, 71, 87eqfnfvd 6796 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8926coeq1i 5699 . . . . . . 7 (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
9088, 89eqtr4di 2811 . . . . . 6 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
91 ffn 6498 . . . . . . . . 9 (𝐺:𝐴𝐶𝐺 Fn 𝐴)
92913ad2ant3 1132 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 Fn 𝐴)
93 fo2nd 7714 . . . . . . . . . . 11 2nd :V–onto→V
94 fofn 6578 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
9593, 94ax-mp 5 . . . . . . . . . 10 2nd Fn V
96 fnssres 6453 . . . . . . . . . 10 ((2nd Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
9795, 66, 96mp2an 691 . . . . . . . . 9 (2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶)
98 fnco 6448 . . . . . . . . 9 (((2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶)) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
9997, 18, 69, 98mp3an2i 1463 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
100 fvco3 6751 . . . . . . . . . 10 (((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
10117, 100sylan 583 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
10274fveq2d 6662 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
10381fvresd 6678 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
10483, 84op2nd 7702 . . . . . . . . . 10 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
105103, 104eqtrdi 2809 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
106101, 102, 1053eqtrrd 2798 . . . . . . . 8 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
10792, 99, 106eqfnfvd 6796 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
10840coeq1i 5699 . . . . . . 7 (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
109107, 108eqtr4di 2811 . . . . . 6 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
11017, 90, 1093jca 1125 . . . . 5 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
111 feq1 6479 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (:𝐴⟶(𝐵 × 𝐶) ↔ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶)))
112 coeq2 5698 . . . . . . 7 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
113112eqeq2d 2769 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
114 coeq2 5698 . . . . . . 7 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
115114eqeq2d 2769 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
116111, 113, 1153anbi123d 1433 . . . . 5 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
117110, 116syl5ibrcom 250 . . . 4 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
11860, 117impbid 215 . . 3 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
119118eubidv 2606 . 2 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
1204, 119mpbird 260 1 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  ∃!weu 2587  wral 3070  Vcvv 3409  wss 3858  cop 4528  cmpt 5112   × cxp 5522  ran crn 5525  cres 5526  ccom 5528   Fn wfn 6330  wf 6331  ontowfo 6333  cfv 6335  1st c1st 7691  2nd c2nd 7692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-1st 7693  df-2nd 7694
This theorem is referenced by:  uptx  22325  txcn  22326
  Copyright terms: Public domain W3C validator