Step | Hyp | Ref
| Expression |
1 | | mptexg 7079 |
. . . 4
⊢ (𝐴 ∈ 𝐷 → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V) |
2 | | eueq 3638 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ V ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
3 | 1, 2 | sylib 217 |
. . 3
⊢ (𝐴 ∈ 𝐷 → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
4 | 3 | 3ad2ant1 1131 |
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
5 | | ffn 6584 |
. . . . . . . 8
⊢ (ℎ:𝐴⟶(𝐵 × 𝐶) → ℎ Fn 𝐴) |
6 | 5 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ Fn 𝐴) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ Fn 𝐴) |
8 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
9 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐶) |
10 | | opelxpi 5617 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐶) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
11 | 8, 9, 10 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
12 | 11 | anandirs 675 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
13 | 12 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
14 | 13 | 3adant1 1128 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∀𝑥 ∈ 𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
15 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
16 | 15 | fmpt 6966 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) |
17 | 14, 16 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶)) |
18 | 17 | ffnd 6585 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴) |
20 | | xpss 5596 |
. . . . . . . . . . 11
⊢ (𝐵 × 𝐶) ⊆ (V × V) |
21 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
22 | 20, 21 | sselid 3915 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
23 | 22 | 3ad2antl1 1183 |
. . . . . . . . 9
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
24 | 23 | adantll 710 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (V × V)) |
25 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = ((𝑃 ∘ ℎ)‘𝑧)) |
26 | | upxp.1 |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (1st ↾
(𝐵 × 𝐶)) |
27 | 26 | coeq1i 5757 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∘ ℎ) = ((1st ↾ (𝐵 × 𝐶)) ∘ ℎ) |
28 | 27 | fveq1i 6757 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∘ ℎ)‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) |
29 | 25, 28 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝐹 = (𝑃 ∘ ℎ) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
30 | 29 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
31 | 30 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
32 | | simpr1 1192 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ:𝐴⟶(𝐵 × 𝐶)) |
33 | | fvco3 6849 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
34 | 32, 33 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
35 | 21 | 3ad2antl1 1183 |
. . . . . . . . . . 11
⊢ (((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
36 | 35 | adantll 710 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) ∈ (𝐵 × 𝐶)) |
37 | 36 | fvresd 6776 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (1st ‘(ℎ‘𝑧))) |
38 | 31, 34, 37 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (1st ‘(ℎ‘𝑧)) = (𝐹‘𝑧)) |
39 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = ((𝑄 ∘ ℎ)‘𝑧)) |
40 | | upxp.2 |
. . . . . . . . . . . . . 14
⊢ 𝑄 = (2nd ↾
(𝐵 × 𝐶)) |
41 | 40 | coeq1i 5757 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∘ ℎ) = ((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ) |
42 | 41 | fveq1i 6757 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∘ ℎ)‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) |
43 | 39, 42 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝐺 = (𝑄 ∘ ℎ) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
44 | 43 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
45 | 44 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧)) |
46 | | fvco3 6849 |
. . . . . . . . . 10
⊢ ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
47 | 32, 46 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ ℎ)‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧))) |
48 | 36 | fvresd 6776 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘(ℎ‘𝑧)) = (2nd ‘(ℎ‘𝑧))) |
49 | 45, 47, 48 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧)) |
50 | | eqopi 7840 |
. . . . . . . 8
⊢ (((ℎ‘𝑧) ∈ (V × V) ∧ ((1st
‘(ℎ‘𝑧)) = (𝐹‘𝑧) ∧ (2nd ‘(ℎ‘𝑧)) = (𝐺‘𝑧))) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
51 | 24, 38, 49, 50 | syl12anc 833 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
52 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
53 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
54 | 52, 53 | opeq12d 4809 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
55 | | opex 5373 |
. . . . . . . . 9
⊢
〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ V |
56 | 54, 15, 55 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
57 | 56 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
58 | 51, 57 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ 𝑧 ∈ 𝐴) → (ℎ‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) |
59 | 7, 19, 58 | eqfnfvd 6894 |
. . . . 5
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
60 | 59 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
61 | | ffn 6584 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
62 | 61 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 Fn 𝐴) |
63 | | fo1st 7824 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
64 | | fofn 6674 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → 1st Fn V) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . . 10
⊢
1st Fn V |
66 | | ssv 3941 |
. . . . . . . . . 10
⊢ (𝐵 × 𝐶) ⊆ V |
67 | | fnssres 6539 |
. . . . . . . . . 10
⊢
((1st Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (1st ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) |
68 | 65, 66, 67 | mp2an 688 |
. . . . . . . . 9
⊢
(1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) |
69 | 17 | frnd 6592 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) |
70 | | fnco 6533 |
. . . . . . . . 9
⊢
(((1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
71 | 68, 18, 69, 70 | mp3an2i 1464 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
72 | | fvco3 6849 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
73 | 17, 72 | sylan 579 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
74 | 56 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
75 | 74 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
76 | | ffvelrn 6941 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
77 | | ffvelrn 6941 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐶) |
78 | | opelxpi 5617 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ 𝐵 ∧ (𝐺‘𝑧) ∈ 𝐶) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
79 | 76, 77, 78 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) ∧ (𝐺:𝐴⟶𝐶 ∧ 𝑧 ∈ 𝐴)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
80 | 79 | anandirs 675 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
81 | 80 | 3adantl1 1164 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝐵 × 𝐶)) |
82 | 81 | fvresd 6776 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
83 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑧) ∈ V |
84 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐺‘𝑧) ∈ V |
85 | 83, 84 | op1st 7812 |
. . . . . . . . . 10
⊢
(1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧) |
86 | 82, 85 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((1st ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
87 | 73, 75, 86 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
88 | 62, 71, 87 | eqfnfvd 6894 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
89 | 26 | coeq1i 5757 |
. . . . . . 7
⊢ (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
90 | 88, 89 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
91 | | ffn 6584 |
. . . . . . . . 9
⊢ (𝐺:𝐴⟶𝐶 → 𝐺 Fn 𝐴) |
92 | 91 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 Fn 𝐴) |
93 | | fo2nd 7825 |
. . . . . . . . . . 11
⊢
2nd :V–onto→V |
94 | | fofn 6674 |
. . . . . . . . . . 11
⊢
(2nd :V–onto→V → 2nd Fn V) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . 10
⊢
2nd Fn V |
96 | | fnssres 6539 |
. . . . . . . . . 10
⊢
((2nd Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (2nd ↾
(𝐵 × 𝐶)) Fn (𝐵 × 𝐶)) |
97 | 95, 66, 96 | mp2an 688 |
. . . . . . . . 9
⊢
(2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) |
98 | | fnco 6533 |
. . . . . . . . 9
⊢
(((2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝐵 × 𝐶)) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
99 | 97, 18, 69, 98 | mp3an2i 1464 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn 𝐴) |
100 | | fvco3 6849 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
101 | 17, 100 | sylan 579 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
102 | 74 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
103 | 81 | fvresd 6776 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
104 | 83, 84 | op2nd 7813 |
. . . . . . . . . 10
⊢
(2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧) |
105 | 103, 104 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
106 | 101, 102,
105 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
107 | 92, 99, 106 | eqfnfvd 6894 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
108 | 40 | coeq1i 5757 |
. . . . . . 7
⊢ (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
109 | 107, 108 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
110 | 17, 90, 109 | 3jca 1126 |
. . . . 5
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
111 | | feq1 6565 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶))) |
112 | | coeq2 5756 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
113 | 112 | eqeq2d 2749 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
114 | | coeq2 5756 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
115 | 114 | eqeq2d 2749 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
116 | 111, 113,
115 | 3anbi123d 1434 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ((𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
117 | 110, 116 | syl5ibrcom 246 |
. . . 4
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
118 | 60, 117 | impbid 211 |
. . 3
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ((ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
119 | 118 | eubidv 2586 |
. 2
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → (∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ ℎ = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
120 | 4, 119 | mpbird 256 |
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |