MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upxp Structured version   Visualization version   GIF version

Theorem upxp 22990
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
upxp.1 š‘ƒ = (1st ā†¾ (šµ Ɨ š¶))
upxp.2 š‘„ = (2nd ā†¾ (šµ Ɨ š¶))
Assertion
Ref Expression
upxp ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ āˆƒ!ā„Ž(ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)))
Distinct variable groups:   š“,ā„Ž   šµ,ā„Ž   š¶,ā„Ž   ā„Ž,š¹   ā„Ž,šŗ   š·,ā„Ž
Allowed substitution hints:   š‘ƒ(ā„Ž)   š‘„(ā„Ž)

Proof of Theorem upxp
Dummy variables š‘„ š‘§ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 7172 . . . 4 (š“ āˆˆ š· ā†’ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) āˆˆ V)
2 eueq 3667 . . . 4 ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) āˆˆ V ā†” āˆƒ!ā„Ž ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
31, 2sylib 217 . . 3 (š“ āˆˆ š· ā†’ āˆƒ!ā„Ž ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
433ad2ant1 1134 . 2 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ āˆƒ!ā„Ž ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
5 ffn 6669 . . . . . . . 8 (ā„Ž:š“āŸ¶(šµ Ɨ š¶) ā†’ ā„Ž Fn š“)
653ad2ant1 1134 . . . . . . 7 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†’ ā„Ž Fn š“)
76adantl 483 . . . . . 6 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) ā†’ ā„Ž Fn š“)
8 ffvelcdm 7033 . . . . . . . . . . . . 13 ((š¹:š“āŸ¶šµ āˆ§ š‘„ āˆˆ š“) ā†’ (š¹ā€˜š‘„) āˆˆ šµ)
9 ffvelcdm 7033 . . . . . . . . . . . . 13 ((šŗ:š“āŸ¶š¶ āˆ§ š‘„ āˆˆ š“) ā†’ (šŗā€˜š‘„) āˆˆ š¶)
10 opelxpi 5671 . . . . . . . . . . . . 13 (((š¹ā€˜š‘„) āˆˆ šµ āˆ§ (šŗā€˜š‘„) āˆˆ š¶) ā†’ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
118, 9, 10syl2an 597 . . . . . . . . . . . 12 (((š¹:š“āŸ¶šµ āˆ§ š‘„ āˆˆ š“) āˆ§ (šŗ:š“āŸ¶š¶ āˆ§ š‘„ āˆˆ š“)) ā†’ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
1211anandirs 678 . . . . . . . . . . 11 (((š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘„ āˆˆ š“) ā†’ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
1312ralrimiva 3140 . . . . . . . . . 10 ((š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ āˆ€š‘„ āˆˆ š“ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
14133adant1 1131 . . . . . . . . 9 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ āˆ€š‘„ āˆˆ š“ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
15 eqid 2733 . . . . . . . . . 10 (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
1615fmpt 7059 . . . . . . . . 9 (āˆ€š‘„ āˆˆ š“ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶) ā†” (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶))
1714, 16sylib 217 . . . . . . . 8 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶))
1817ffnd 6670 . . . . . . 7 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) Fn š“)
1918adantr 482 . . . . . 6 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) ā†’ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) Fn š“)
20 xpss 5650 . . . . . . . . . . 11 (šµ Ɨ š¶) āŠ† (V Ɨ V)
21 ffvelcdm 7033 . . . . . . . . . . 11 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (šµ Ɨ š¶))
2220, 21sselid 3943 . . . . . . . . . 10 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (V Ɨ V))
23223ad2antl1 1186 . . . . . . . . 9 (((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (V Ɨ V))
2423adantll 713 . . . . . . . 8 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (V Ɨ V))
25 fveq1 6842 . . . . . . . . . . . 12 (š¹ = (š‘ƒ āˆ˜ ā„Ž) ā†’ (š¹ā€˜š‘§) = ((š‘ƒ āˆ˜ ā„Ž)ā€˜š‘§))
26 upxp.1 . . . . . . . . . . . . . 14 š‘ƒ = (1st ā†¾ (šµ Ɨ š¶))
2726coeq1i 5816 . . . . . . . . . . . . 13 (š‘ƒ āˆ˜ ā„Ž) = ((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)
2827fveq1i 6844 . . . . . . . . . . . 12 ((š‘ƒ āˆ˜ ā„Ž)ā€˜š‘§) = (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§)
2925, 28eqtrdi 2789 . . . . . . . . . . 11 (š¹ = (š‘ƒ āˆ˜ ā„Ž) ā†’ (š¹ā€˜š‘§) = (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
30293ad2ant2 1135 . . . . . . . . . 10 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†’ (š¹ā€˜š‘§) = (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
3130ad2antlr 726 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (š¹ā€˜š‘§) = (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
32 simpr1 1195 . . . . . . . . . 10 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) ā†’ ā„Ž:š“āŸ¶(šµ Ɨ š¶))
33 fvco3 6941 . . . . . . . . . 10 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§) = ((1st ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)))
3432, 33sylan 581 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§) = ((1st ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)))
35213ad2antl1 1186 . . . . . . . . . . 11 (((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (šµ Ɨ š¶))
3635adantll 713 . . . . . . . . . 10 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) āˆˆ (šµ Ɨ š¶))
3736fvresd 6863 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ ((1st ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)) = (1st ā€˜(ā„Žā€˜š‘§)))
3831, 34, 373eqtrrd 2778 . . . . . . . 8 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (1st ā€˜(ā„Žā€˜š‘§)) = (š¹ā€˜š‘§))
39 fveq1 6842 . . . . . . . . . . . 12 (šŗ = (š‘„ āˆ˜ ā„Ž) ā†’ (šŗā€˜š‘§) = ((š‘„ āˆ˜ ā„Ž)ā€˜š‘§))
40 upxp.2 . . . . . . . . . . . . . 14 š‘„ = (2nd ā†¾ (šµ Ɨ š¶))
4140coeq1i 5816 . . . . . . . . . . . . 13 (š‘„ āˆ˜ ā„Ž) = ((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)
4241fveq1i 6844 . . . . . . . . . . . 12 ((š‘„ āˆ˜ ā„Ž)ā€˜š‘§) = (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§)
4339, 42eqtrdi 2789 . . . . . . . . . . 11 (šŗ = (š‘„ āˆ˜ ā„Ž) ā†’ (šŗā€˜š‘§) = (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
44433ad2ant3 1136 . . . . . . . . . 10 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†’ (šŗā€˜š‘§) = (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
4544ad2antlr 726 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (šŗā€˜š‘§) = (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§))
46 fvco3 6941 . . . . . . . . . 10 ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§) = ((2nd ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)))
4732, 46sylan 581 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ ā„Ž)ā€˜š‘§) = ((2nd ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)))
4836fvresd 6863 . . . . . . . . 9 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ ((2nd ā†¾ (šµ Ɨ š¶))ā€˜(ā„Žā€˜š‘§)) = (2nd ā€˜(ā„Žā€˜š‘§)))
4945, 47, 483eqtrrd 2778 . . . . . . . 8 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (2nd ā€˜(ā„Žā€˜š‘§)) = (šŗā€˜š‘§))
50 eqopi 7958 . . . . . . . 8 (((ā„Žā€˜š‘§) āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜(ā„Žā€˜š‘§)) = (š¹ā€˜š‘§) āˆ§ (2nd ā€˜(ā„Žā€˜š‘§)) = (šŗā€˜š‘§))) ā†’ (ā„Žā€˜š‘§) = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
5124, 38, 49, 50syl12anc 836 . . . . . . 7 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
52 fveq2 6843 . . . . . . . . . 10 (š‘„ = š‘§ ā†’ (š¹ā€˜š‘„) = (š¹ā€˜š‘§))
53 fveq2 6843 . . . . . . . . . 10 (š‘„ = š‘§ ā†’ (šŗā€˜š‘„) = (šŗā€˜š‘§))
5452, 53opeq12d 4839 . . . . . . . . 9 (š‘„ = š‘§ ā†’ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
55 opex 5422 . . . . . . . . 9 āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ© āˆˆ V
5654, 15, 55fvmpt 6949 . . . . . . . 8 (š‘§ āˆˆ š“ ā†’ ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§) = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
5756adantl 483 . . . . . . 7 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§) = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
5851, 57eqtr4d 2776 . . . . . 6 ((((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) āˆ§ š‘§ āˆˆ š“) ā†’ (ā„Žā€˜š‘§) = ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§))
597, 19, 58eqfnfvd 6986 . . . . 5 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))) ā†’ ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
6059ex 414 . . . 4 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†’ ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
61 ffn 6669 . . . . . . . . 9 (š¹:š“āŸ¶šµ ā†’ š¹ Fn š“)
62613ad2ant2 1135 . . . . . . . 8 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ š¹ Fn š“)
63 fo1st 7942 . . . . . . . . . . 11 1st :Vā€“ontoā†’V
64 fofn 6759 . . . . . . . . . . 11 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
6563, 64ax-mp 5 . . . . . . . . . 10 1st Fn V
66 ssv 3969 . . . . . . . . . 10 (šµ Ɨ š¶) āŠ† V
67 fnssres 6625 . . . . . . . . . 10 ((1st Fn V āˆ§ (šµ Ɨ š¶) āŠ† V) ā†’ (1st ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶))
6865, 66, 67mp2an 691 . . . . . . . . 9 (1st ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶)
6917frnd 6677 . . . . . . . . 9 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ran (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) āŠ† (šµ Ɨ š¶))
70 fnco 6619 . . . . . . . . 9 (((1st ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶) āˆ§ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) Fn š“ āˆ§ ran (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) āŠ† (šµ Ɨ š¶)) ā†’ ((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) Fn š“)
7168, 18, 69, 70mp3an2i 1467 . . . . . . . 8 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) Fn š“)
72 fvco3 6941 . . . . . . . . . 10 (((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§) = ((1st ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)))
7317, 72sylan 581 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§) = ((1st ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)))
7456adantl 483 . . . . . . . . . 10 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§) = āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©)
7574fveq2d 6847 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((1st ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)) = ((1st ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©))
76 ffvelcdm 7033 . . . . . . . . . . . . . 14 ((š¹:š“āŸ¶šµ āˆ§ š‘§ āˆˆ š“) ā†’ (š¹ā€˜š‘§) āˆˆ šµ)
77 ffvelcdm 7033 . . . . . . . . . . . . . 14 ((šŗ:š“āŸ¶š¶ āˆ§ š‘§ āˆˆ š“) ā†’ (šŗā€˜š‘§) āˆˆ š¶)
78 opelxpi 5671 . . . . . . . . . . . . . 14 (((š¹ā€˜š‘§) āˆˆ šµ āˆ§ (šŗā€˜š‘§) āˆˆ š¶) ā†’ āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ© āˆˆ (šµ Ɨ š¶))
7976, 77, 78syl2an 597 . . . . . . . . . . . . 13 (((š¹:š“āŸ¶šµ āˆ§ š‘§ āˆˆ š“) āˆ§ (šŗ:š“āŸ¶š¶ āˆ§ š‘§ āˆˆ š“)) ā†’ āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ© āˆˆ (šµ Ɨ š¶))
8079anandirs 678 . . . . . . . . . . . 12 (((š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ© āˆˆ (šµ Ɨ š¶))
81803adantl1 1167 . . . . . . . . . . 11 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ© āˆˆ (šµ Ɨ š¶))
8281fvresd 6863 . . . . . . . . . 10 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((1st ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (1st ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©))
83 fvex 6856 . . . . . . . . . . 11 (š¹ā€˜š‘§) āˆˆ V
84 fvex 6856 . . . . . . . . . . 11 (šŗā€˜š‘§) āˆˆ V
8583, 84op1st 7930 . . . . . . . . . 10 (1st ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (š¹ā€˜š‘§)
8682, 85eqtrdi 2789 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((1st ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (š¹ā€˜š‘§))
8773, 75, 863eqtrrd 2778 . . . . . . . 8 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (š¹ā€˜š‘§) = (((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§))
8862, 71, 87eqfnfvd 6986 . . . . . . 7 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ š¹ = ((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
8926coeq1i 5816 . . . . . . 7 (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) = ((1st ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
9088, 89eqtr4di 2791 . . . . . 6 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ š¹ = (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
91 ffn 6669 . . . . . . . . 9 (šŗ:š“āŸ¶š¶ ā†’ šŗ Fn š“)
92913ad2ant3 1136 . . . . . . . 8 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ šŗ Fn š“)
93 fo2nd 7943 . . . . . . . . . . 11 2nd :Vā€“ontoā†’V
94 fofn 6759 . . . . . . . . . . 11 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
9593, 94ax-mp 5 . . . . . . . . . 10 2nd Fn V
96 fnssres 6625 . . . . . . . . . 10 ((2nd Fn V āˆ§ (šµ Ɨ š¶) āŠ† V) ā†’ (2nd ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶))
9795, 66, 96mp2an 691 . . . . . . . . 9 (2nd ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶)
98 fnco 6619 . . . . . . . . 9 (((2nd ā†¾ (šµ Ɨ š¶)) Fn (šµ Ɨ š¶) āˆ§ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) Fn š“ āˆ§ ran (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) āŠ† (šµ Ɨ š¶)) ā†’ ((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) Fn š“)
9997, 18, 69, 98mp3an2i 1467 . . . . . . . 8 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) Fn š“)
100 fvco3 6941 . . . . . . . . . 10 (((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§) = ((2nd ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)))
10117, 100sylan 581 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§) = ((2nd ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)))
10274fveq2d 6847 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((2nd ā†¾ (šµ Ɨ š¶))ā€˜((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)ā€˜š‘§)) = ((2nd ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©))
10381fvresd 6863 . . . . . . . . . 10 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((2nd ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (2nd ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©))
10483, 84op2nd 7931 . . . . . . . . . 10 (2nd ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (šŗā€˜š‘§)
105103, 104eqtrdi 2789 . . . . . . . . 9 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ ((2nd ā†¾ (šµ Ɨ š¶))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)āŸ©) = (šŗā€˜š‘§))
106101, 102, 1053eqtrrd 2778 . . . . . . . 8 (((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) āˆ§ š‘§ āˆˆ š“) ā†’ (šŗā€˜š‘§) = (((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))ā€˜š‘§))
10792, 99, 106eqfnfvd 6986 . . . . . . 7 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ šŗ = ((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
10840coeq1i 5816 . . . . . . 7 (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) = ((2nd ā†¾ (šµ Ɨ š¶)) āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))
109107, 108eqtr4di 2791 . . . . . 6 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ šŗ = (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
11017, 90, 1093jca 1129 . . . . 5 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) āˆ§ šŗ = (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))))
111 feq1 6650 . . . . . 6 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) ā†” (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶)))
112 coeq2 5815 . . . . . . 7 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (š‘ƒ āˆ˜ ā„Ž) = (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
113112eqeq2d 2744 . . . . . 6 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (š¹ = (š‘ƒ āˆ˜ ā„Ž) ā†” š¹ = (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))))
114 coeq2 5815 . . . . . . 7 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (š‘„ āˆ˜ ā„Ž) = (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
115114eqeq2d 2744 . . . . . 6 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (šŗ = (š‘„ āˆ˜ ā„Ž) ā†” šŗ = (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©))))
116111, 113, 1153anbi123d 1437 . . . . 5 (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†” ((š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©):š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)) āˆ§ šŗ = (š‘„ āˆ˜ (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))))
117110, 116syl5ibrcom 247 . . . 4 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ (ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©) ā†’ (ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž))))
11860, 117impbid 211 . . 3 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ ((ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†” ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
119118eubidv 2581 . 2 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ (āˆƒ!ā„Ž(ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)) ā†” āˆƒ!ā„Ž ā„Ž = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)))
1204, 119mpbird 257 1 ((š“ āˆˆ š· āˆ§ š¹:š“āŸ¶šµ āˆ§ šŗ:š“āŸ¶š¶) ā†’ āˆƒ!ā„Ž(ā„Ž:š“āŸ¶(šµ Ɨ š¶) āˆ§ š¹ = (š‘ƒ āˆ˜ ā„Ž) āˆ§ šŗ = (š‘„ āˆ˜ ā„Ž)))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   āˆ§ wa 397   āˆ§ w3a 1088   = wceq 1542   āˆˆ wcel 2107  āˆƒ!weu 2563  āˆ€wral 3061  Vcvv 3444   āŠ† wss 3911  āŸØcop 4593   ā†¦ cmpt 5189   Ɨ cxp 5632  ran crn 5635   ā†¾ cres 5636   āˆ˜ ccom 5638   Fn wfn 6492  āŸ¶wf 6493  ā€“ontoā†’wfo 6495  ā€˜cfv 6497  1st c1st 7920  2nd c2nd 7921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-1st 7922  df-2nd 7923
This theorem is referenced by:  uptx  22992  txcn  22993
  Copyright terms: Public domain W3C validator