MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upxp Structured version   Visualization version   GIF version

Theorem upxp 21647
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
upxp.1 𝑃 = (1st ↾ (𝐵 × 𝐶))
upxp.2 𝑄 = (2nd ↾ (𝐵 × 𝐶))
Assertion
Ref Expression
upxp ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   𝐴,   𝐵,   𝐶,   ,𝐹   ,𝐺   𝐷,
Allowed substitution hints:   𝑃()   𝑄()

Proof of Theorem upxp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6628 . . . 4 (𝐴𝐷 → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ V)
2 eueq 3530 . . . 4 ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ V ↔ ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
31, 2sylib 208 . . 3 (𝐴𝐷 → ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
433ad2ant1 1127 . 2 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5 ffn 6185 . . . . . . . 8 (:𝐴⟶(𝐵 × 𝐶) → Fn 𝐴)
653ad2ant1 1127 . . . . . . 7 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → Fn 𝐴)
76adantl 467 . . . . . 6 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → Fn 𝐴)
8 ffvelrn 6500 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
9 ffvelrn 6500 . . . . . . . . . . . . 13 ((𝐺:𝐴𝐶𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
10 opelxpi 5288 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
118, 9, 10syl2an 583 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝑥𝐴) ∧ (𝐺:𝐴𝐶𝑥𝐴)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
1211anandirs 658 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
1312ralrimiva 3115 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
14133adant1 1124 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
15 eqid 2771 . . . . . . . . . 10 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1615fmpt 6523 . . . . . . . . 9 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶))
1714, 16sylib 208 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶))
18 ffn 6185 . . . . . . . 8 ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
1917, 18syl 17 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
2019adantr 466 . . . . . 6 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
21 xpss 5265 . . . . . . . . . . 11 (𝐵 × 𝐶) ⊆ (V × V)
22 ffvelrn 6500 . . . . . . . . . . 11 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
2321, 22sseldi 3750 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
24233ad2antl1 1200 . . . . . . . . 9 (((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
2524adantll 693 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) ∈ (V × V))
26 fveq1 6331 . . . . . . . . . . . 12 (𝐹 = (𝑃) → (𝐹𝑧) = ((𝑃)‘𝑧))
27 upxp.1 . . . . . . . . . . . . . 14 𝑃 = (1st ↾ (𝐵 × 𝐶))
2827coeq1i 5420 . . . . . . . . . . . . 13 (𝑃) = ((1st ↾ (𝐵 × 𝐶)) ∘ )
2928fveq1i 6333 . . . . . . . . . . . 12 ((𝑃)‘𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧)
3026, 29syl6eq 2821 . . . . . . . . . . 11 (𝐹 = (𝑃) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
31303ad2ant2 1128 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
3231ad2antlr 706 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
33 simpr1 1233 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → :𝐴⟶(𝐵 × 𝐶))
34 fvco3 6417 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(𝑧)))
3533, 34sylan 569 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘(𝑧)))
36223ad2antl1 1200 . . . . . . . . . . 11 (((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
3736adantll 693 . . . . . . . . . 10 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) ∈ (𝐵 × 𝐶))
38 fvres 6348 . . . . . . . . . 10 ((𝑧) ∈ (𝐵 × 𝐶) → ((1st ↾ (𝐵 × 𝐶))‘(𝑧)) = (1st ‘(𝑧)))
3937, 38syl 17 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘(𝑧)) = (1st ‘(𝑧)))
4032, 35, 393eqtrrd 2810 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (1st ‘(𝑧)) = (𝐹𝑧))
41 fveq1 6331 . . . . . . . . . . . 12 (𝐺 = (𝑄) → (𝐺𝑧) = ((𝑄)‘𝑧))
42 upxp.2 . . . . . . . . . . . . . 14 𝑄 = (2nd ↾ (𝐵 × 𝐶))
4342coeq1i 5420 . . . . . . . . . . . . 13 (𝑄) = ((2nd ↾ (𝐵 × 𝐶)) ∘ )
4443fveq1i 6333 . . . . . . . . . . . 12 ((𝑄)‘𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧)
4541, 44syl6eq 2821 . . . . . . . . . . 11 (𝐺 = (𝑄) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
46453ad2ant3 1129 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
4746ad2antlr 706 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧))
48 fvco3 6417 . . . . . . . . . 10 ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)))
4933, 48sylan 569 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ )‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)))
50 fvres 6348 . . . . . . . . . 10 ((𝑧) ∈ (𝐵 × 𝐶) → ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)) = (2nd ‘(𝑧)))
5137, 50syl 17 . . . . . . . . 9 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘(𝑧)) = (2nd ‘(𝑧)))
5247, 49, 513eqtrrd 2810 . . . . . . . 8 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (2nd ‘(𝑧)) = (𝐺𝑧))
53 eqopi 7351 . . . . . . . 8 (((𝑧) ∈ (V × V) ∧ ((1st ‘(𝑧)) = (𝐹𝑧) ∧ (2nd ‘(𝑧)) = (𝐺𝑧))) → (𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
5425, 40, 52, 53syl12anc 1474 . . . . . . 7 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
55 fveq2 6332 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
56 fveq2 6332 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
5755, 56opeq12d 4547 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
58 opex 5060 . . . . . . . . 9 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
5957, 15, 58fvmpt 6424 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
6059adantl 467 . . . . . . 7 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
6154, 60eqtr4d 2808 . . . . . 6 ((((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ 𝑧𝐴) → (𝑧) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧))
627, 20, 61eqfnfvd 6457 . . . . 5 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
6362ex 397 . . . 4 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
64 ffn 6185 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
65643ad2ant2 1128 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 Fn 𝐴)
66 fo1st 7335 . . . . . . . . . . . 12 1st :V–onto→V
67 fofn 6258 . . . . . . . . . . . 12 (1st :V–onto→V → 1st Fn V)
6866, 67ax-mp 5 . . . . . . . . . . 11 1st Fn V
69 ssv 3774 . . . . . . . . . . 11 (𝐵 × 𝐶) ⊆ V
70 fnssres 6144 . . . . . . . . . . 11 ((1st Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
7168, 69, 70mp2an 672 . . . . . . . . . 10 (1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶)
7271a1i 11 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
73 frn 6193 . . . . . . . . . 10 ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) → ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶))
7417, 73syl 17 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶))
75 fnco 6139 . . . . . . . . 9 (((1st ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶)) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
7672, 19, 74, 75syl3anc 1476 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
77 fvco3 6417 . . . . . . . . . 10 (((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7817, 77sylan 569 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7959adantl 467 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
8079fveq2d 6336 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
81 ffvelrn 6500 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
82 ffvelrn 6500 . . . . . . . . . . . . . 14 ((𝐺:𝐴𝐶𝑧𝐴) → (𝐺𝑧) ∈ 𝐶)
83 opelxpi 5288 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝐵 ∧ (𝐺𝑧) ∈ 𝐶) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
8481, 82, 83syl2an 583 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑧𝐴) ∧ (𝐺:𝐴𝐶𝑧𝐴)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
8584anandirs 658 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
86853adantl1 1171 . . . . . . . . . . 11 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶))
87 fvres 6348 . . . . . . . . . . 11 (⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶) → ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
8886, 87syl 17 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
89 fvex 6342 . . . . . . . . . . 11 (𝐹𝑧) ∈ V
90 fvex 6342 . . . . . . . . . . 11 (𝐺𝑧) ∈ V
9189, 90op1st 7323 . . . . . . . . . 10 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
9288, 91syl6eq 2821 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((1st ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
9378, 80, 923eqtrrd 2810 . . . . . . . 8 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (𝐹𝑧) = (((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
9465, 76, 93eqfnfvd 6457 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
9527coeq1i 5420 . . . . . . 7 (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
9694, 95syl6eqr 2823 . . . . . 6 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
97 ffn 6185 . . . . . . . . 9 (𝐺:𝐴𝐶𝐺 Fn 𝐴)
98973ad2ant3 1129 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 Fn 𝐴)
99 fo2nd 7336 . . . . . . . . . . . 12 2nd :V–onto→V
100 fofn 6258 . . . . . . . . . . . 12 (2nd :V–onto→V → 2nd Fn V)
10199, 100ax-mp 5 . . . . . . . . . . 11 2nd Fn V
102 fnssres 6144 . . . . . . . . . . 11 ((2nd Fn V ∧ (𝐵 × 𝐶) ⊆ V) → (2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
103101, 69, 102mp2an 672 . . . . . . . . . 10 (2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶)
104103a1i 11 . . . . . . . . 9 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶))
105 fnco 6139 . . . . . . . . 9 (((2nd ↾ (𝐵 × 𝐶)) Fn (𝐵 × 𝐶) ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝐵 × 𝐶)) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
106104, 19, 74, 105syl3anc 1476 . . . . . . . 8 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝐴)
107 fvco3 6417 . . . . . . . . . 10 (((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
10817, 107sylan 569 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
10979fveq2d 6336 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
110 fvres 6348 . . . . . . . . . . 11 (⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝐵 × 𝐶) → ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
11186, 110syl 17 . . . . . . . . . 10 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
11289, 90op2nd 7324 . . . . . . . . . 10 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
113111, 112syl6eq 2821 . . . . . . . . 9 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → ((2nd ↾ (𝐵 × 𝐶))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
114108, 109, 1133eqtrrd 2810 . . . . . . . 8 (((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) ∧ 𝑧𝐴) → (𝐺𝑧) = (((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
11598, 106, 114eqfnfvd 6457 . . . . . . 7 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
11642coeq1i 5420 . . . . . . 7 (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝐵 × 𝐶)) ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
117115, 116syl6eqr 2823 . . . . . 6 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
11817, 96, 1173jca 1122 . . . . 5 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
119 feq1 6166 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (:𝐴⟶(𝐵 × 𝐶) ↔ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶)))
120 coeq2 5419 . . . . . . 7 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
121120eqeq2d 2781 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
122 coeq2 5419 . . . . . . 7 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
123122eqeq2d 2781 . . . . . 6 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
124119, 121, 1233anbi123d 1547 . . . . 5 ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩):𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
125118, 124syl5ibrcom 237 . . . 4 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ( = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
12663, 125impbid 202 . . 3 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ((:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
127126eubidv 2638 . 2 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → (∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃! = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
1284, 127mpbird 247 1 ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  ∃!weu 2618  wral 3061  Vcvv 3351  wss 3723  cop 4322  cmpt 4863   × cxp 5247  ran crn 5250  cres 5251  ccom 5253   Fn wfn 6026  wf 6027  ontowfo 6029  cfv 6031  1st c1st 7313  2nd c2nd 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-1st 7315  df-2nd 7316
This theorem is referenced by:  uptx  21649  txcn  21650
  Copyright terms: Public domain W3C validator