![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptfng | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptfng | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq 3699 | . . 3 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
2 | 1 | ralbii 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵) |
3 | mptfng.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | df-mpt 5225 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
5 | 3, 4 | eqtri 2754 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | 5 | fnopabg 6680 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ 𝐹 Fn 𝐴) |
7 | 2, 6 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃!weu 2556 ∀wral 3055 Vcvv 3468 {copab 5203 ↦ cmpt 5224 Fn wfn 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-fun 6538 df-fn 6539 |
This theorem is referenced by: fnmpt 6683 fnmpti 6686 mpteqb 7010 ofmpteq 7688 bdayfo 27561 fobigcup 35405 dihf11lem 40648 |
Copyright terms: Public domain | W3C validator |