MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfng Structured version   Visualization version   GIF version

Theorem mptfng 6231
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptfng (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptfng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 3574 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 3162 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 mptfng.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
4 df-mpt 4924 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
53, 4eqtri 2822 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
65fnopabg 6229 . 2 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵𝐹 Fn 𝐴)
72, 6bitri 267 1 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wcel 2157  ∃!weu 2609  wral 3090  Vcvv 3386  {copab 4906  cmpt 4923   Fn wfn 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rab 3099  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-fun 6104  df-fn 6105
This theorem is referenced by:  fnmpt  6232  fnmpti  6234  mpteqb  6525  ofmpteq  7151  bdayfo  32340  fobigcup  32519  dihf11lem  37286
  Copyright terms: Public domain W3C validator