Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc Structured version   Visualization version   GIF version

Theorem iotasbc 44451
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem iotasbc
StepHypRef Expression
1 sbc5 3769 . 2 ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))
2 iotaexeu 44450 . . . . . . 7 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
3 eueq 3667 . . . . . . 7 ((℩𝑥𝜑) ∈ V ↔ ∃!𝑦 𝑦 = (℩𝑥𝜑))
42, 3sylib 218 . . . . . 6 (∃!𝑥𝜑 → ∃!𝑦 𝑦 = (℩𝑥𝜑))
5 eu6 2569 . . . . . . 7 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 iotaval 6455 . . . . . . . . . 10 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
76eqcomd 2737 . . . . . . . . 9 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
87ancri 549 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
98eximi 1836 . . . . . . 7 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
105, 9sylbi 217 . . . . . 6 (∃!𝑥𝜑 → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
11 eupick 2628 . . . . . 6 ((∃!𝑦 𝑦 = (℩𝑥𝜑) ∧ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦))) → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑𝑥 = 𝑦)))
124, 10, 11syl2anc 584 . . . . 5 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑𝑥 = 𝑦)))
1312, 7impbid1 225 . . . 4 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
1413anbi1d 631 . . 3 (∃!𝑥𝜑 → ((𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
1514exbidv 1922 . 2 (∃!𝑥𝜑 → (∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
161, 15bitrid 283 1 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  Vcvv 3436  [wsbc 3741  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742  df-un 3907  df-ss 3919  df-sn 4577  df-pr 4579  df-uni 4860  df-iota 6437
This theorem is referenced by:  iotasbc2  44452  iotavalb  44462  fvsb  44483
  Copyright terms: Public domain W3C validator