| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc | Structured version Visualization version GIF version | ||
| Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotasbc | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3793 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
| 2 | iotaexeu 44442 | . . . . . . 7 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
| 3 | eueq 3691 | . . . . . . 7 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃!𝑦 𝑦 = (℩𝑥𝜑)) | |
| 4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃!𝑦 𝑦 = (℩𝑥𝜑)) |
| 5 | eu6 2573 | . . . . . . 7 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 6 | iotaval 6502 | . . . . . . . . . 10 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
| 7 | 6 | eqcomd 2741 | . . . . . . . . 9 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
| 8 | 7 | ancri 549 | . . . . . . . 8 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 9 | 8 | eximi 1835 | . . . . . . 7 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 10 | 5, 9 | sylbi 217 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 11 | eupick 2632 | . . . . . 6 ⊢ ((∃!𝑦 𝑦 = (℩𝑥𝜑) ∧ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
| 12 | 4, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 13 | 12, 7 | impbid1 225 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 14 | 13 | anbi1d 631 | . . 3 ⊢ (∃!𝑥𝜑 → ((𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
| 15 | 14 | exbidv 1921 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
| 16 | 1, 15 | bitrid 283 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2567 Vcvv 3459 [wsbc 3765 ℩cio 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 |
| This theorem is referenced by: iotasbc2 44444 iotavalb 44454 fvsb 44476 |
| Copyright terms: Public domain | W3C validator |