![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc | Structured version Visualization version GIF version |
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 3832 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
2 | iotaexeu 44387 | . . . . . . 7 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
3 | eueq 3730 | . . . . . . 7 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃!𝑦 𝑦 = (℩𝑥𝜑)) | |
4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃!𝑦 𝑦 = (℩𝑥𝜑)) |
5 | eu6 2577 | . . . . . . 7 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
6 | iotaval 6544 | . . . . . . . . . 10 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
7 | 6 | eqcomd 2746 | . . . . . . . . 9 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
8 | 7 | ancri 549 | . . . . . . . 8 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | eximi 1833 | . . . . . . 7 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 5, 9 | sylbi 217 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
11 | eupick 2636 | . . . . . 6 ⊢ ((∃!𝑦 𝑦 = (℩𝑥𝜑) ∧ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
12 | 4, 10, 11 | syl2anc 583 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
13 | 12, 7 | impbid1 225 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
14 | 13 | anbi1d 630 | . . 3 ⊢ (∃!𝑥𝜑 → ((𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
15 | 14 | exbidv 1920 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
16 | 1, 15 | bitrid 283 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 [wsbc 3804 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iotasbc2 44389 iotavalb 44399 fvsb 44421 |
Copyright terms: Public domain | W3C validator |