Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc Structured version   Visualization version   GIF version

Theorem iotasbc 42347
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem iotasbc
StepHypRef Expression
1 sbc5 3754 . 2 ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓))
2 iotaexeu 42346 . . . . . . 7 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
3 eueq 3653 . . . . . . 7 ((℩𝑥𝜑) ∈ V ↔ ∃!𝑦 𝑦 = (℩𝑥𝜑))
42, 3sylib 217 . . . . . 6 (∃!𝑥𝜑 → ∃!𝑦 𝑦 = (℩𝑥𝜑))
5 eu6 2572 . . . . . . 7 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 iotaval 6444 . . . . . . . . . 10 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
76eqcomd 2742 . . . . . . . . 9 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
87ancri 550 . . . . . . . 8 (∀𝑥(𝜑𝑥 = 𝑦) → (𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
98eximi 1836 . . . . . . 7 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
105, 9sylbi 216 . . . . . 6 (∃!𝑥𝜑 → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
11 eupick 2633 . . . . . 6 ((∃!𝑦 𝑦 = (℩𝑥𝜑) ∧ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑𝑥 = 𝑦))) → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑𝑥 = 𝑦)))
124, 10, 11syl2anc 584 . . . . 5 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑𝑥 = 𝑦)))
1312, 7impbid1 224 . . . 4 (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
1413anbi1d 630 . . 3 (∃!𝑥𝜑 → ((𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
1514exbidv 1923 . 2 (∃!𝑥𝜑 → (∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
161, 15bitrid 282 1 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1538   = wceq 1540  wex 1780  wcel 2105  ∃!weu 2566  Vcvv 3441  [wsbc 3726  cio 6423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-sbc 3727  df-un 3902  df-in 3904  df-ss 3914  df-sn 4573  df-pr 4575  df-uni 4852  df-iota 6425
This theorem is referenced by:  iotasbc2  42348  iotavalb  42358  fvsb  42380
  Copyright terms: Public domain W3C validator