Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc | Structured version Visualization version GIF version |
Description: Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define ℩ in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc | ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 3754 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)) | |
2 | iotaexeu 42346 | . . . . . . 7 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
3 | eueq 3653 | . . . . . . 7 ⊢ ((℩𝑥𝜑) ∈ V ↔ ∃!𝑦 𝑦 = (℩𝑥𝜑)) | |
4 | 2, 3 | sylib 217 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃!𝑦 𝑦 = (℩𝑥𝜑)) |
5 | eu6 2572 | . . . . . . 7 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
6 | iotaval 6444 | . . . . . . . . . 10 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
7 | 6 | eqcomd 2742 | . . . . . . . . 9 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑)) |
8 | 7 | ancri 550 | . . . . . . . 8 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | eximi 1836 | . . . . . . 7 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 5, 9 | sylbi 216 | . . . . . 6 ⊢ (∃!𝑥𝜑 → ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
11 | eupick 2633 | . . . . . 6 ⊢ ((∃!𝑦 𝑦 = (℩𝑥𝜑) ∧ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
12 | 4, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
13 | 12, 7 | impbid1 224 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝑦 = (℩𝑥𝜑) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
14 | 13 | anbi1d 630 | . . 3 ⊢ (∃!𝑥𝜑 → ((𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
15 | 14 | exbidv 1923 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓) ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
16 | 1, 15 | bitrid 282 | 1 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃!weu 2566 Vcvv 3441 [wsbc 3726 ℩cio 6423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-sbc 3727 df-un 3902 df-in 3904 df-ss 3914 df-sn 4573 df-pr 4575 df-uni 4852 df-iota 6425 |
This theorem is referenced by: iotasbc2 42348 iotavalb 42358 fvsb 42380 |
Copyright terms: Public domain | W3C validator |