| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4141 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4592 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3996 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pr 4592 |
| This theorem is referenced by: snsstp1 4780 op1stb 5431 uniop 5475 1sdom2dom 9194 rankopb 9805 ltrelxr 11235 seqexw 13982 2strbas 17198 phlvsca 17313 prdshom 17430 ipobas 18490 ipolerval 18491 gsumpr 19885 lspprid1 20903 lsppratlem3 21059 lsppratlem4 21060 ex-dif 30352 ex-un 30353 ex-in 30354 idlsrgtset 33479 coinflippv 34475 pthhashvtx 35115 subfacp1lem2a 35167 altopthsn 35949 rankaltopb 35967 dvh3dim3N 41443 mapdindp2 41715 lspindp5 41764 algsca 43166 clsk1indlem2 44031 clsk1indlem3 44032 clsk1indlem1 44034 mnuprdlem4 44264 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |