| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4137 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4588 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pr 4588 |
| This theorem is referenced by: snsstp1 4776 op1stb 5426 uniop 5470 1sdom2dom 9170 rankopb 9781 ltrelxr 11211 seqexw 13958 2strbas 17174 phlvsca 17289 prdshom 17406 ipobas 18466 ipolerval 18467 gsumpr 19861 lspprid1 20879 lsppratlem3 21035 lsppratlem4 21036 ex-dif 30325 ex-un 30326 ex-in 30327 idlsrgtset 33452 coinflippv 34448 pthhashvtx 35088 subfacp1lem2a 35140 altopthsn 35922 rankaltopb 35940 dvh3dim3N 41416 mapdindp2 41688 lspindp5 41737 algsca 43139 clsk1indlem2 44004 clsk1indlem3 44005 clsk1indlem1 44007 mnuprdlem4 44237 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |