![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4634 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pr 4634 |
This theorem is referenced by: snsstp1 4821 op1stb 5482 uniop 5525 1sdom2dom 9281 rankopb 9890 ltrelxr 11320 seqexw 14055 2strbas 17268 2strbas1 17272 phlvsca 17396 prdshom 17514 ipobas 18589 ipolerval 18590 gsumpr 19988 lspprid1 21013 lsppratlem3 21169 lsppratlem4 21170 ex-dif 30452 ex-un 30453 ex-in 30454 idlsrgtset 33516 coinflippv 34465 pthhashvtx 35112 subfacp1lem2a 35165 altopthsn 35943 rankaltopb 35961 dvh3dim3N 41432 mapdindp2 41704 lspindp5 41753 algsca 43166 clsk1indlem2 44032 clsk1indlem3 44033 clsk1indlem1 44035 mnuprdlem4 44271 |
Copyright terms: Public domain | W3C validator |