Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4110 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4569 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3962 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3889 ⊆ wss 3891 {csn 4566 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-in 3898 df-ss 3908 df-pr 4569 |
This theorem is referenced by: snsstp1 4754 op1stb 5388 uniop 5431 rankopb 9594 ltrelxr 11020 seqexw 13718 2strbas 16916 2strbas1 16920 phlvsca 17041 prdshom 17159 ipobas 18230 ipolerval 18231 gsumpr 19537 lspprid1 20240 lsppratlem3 20392 lsppratlem4 20393 ex-dif 28766 ex-un 28767 ex-in 28768 idlsrgtset 31632 coinflippv 32429 pthhashvtx 33068 subfacp1lem2a 33121 altopthsn 34242 rankaltopb 34260 dvh3dim3N 39442 mapdindp2 39714 lspindp5 39763 algsca 40986 clsk1indlem2 41605 clsk1indlem3 41606 clsk1indlem1 41608 mnuprdlem4 41846 |
Copyright terms: Public domain | W3C validator |