| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4153 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4604 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-pr 4604 |
| This theorem is referenced by: snsstp1 4792 op1stb 5446 uniop 5490 1sdom2dom 9255 rankopb 9866 ltrelxr 11296 seqexw 14035 2strbas 17249 phlvsca 17364 prdshom 17481 ipobas 18541 ipolerval 18542 gsumpr 19936 lspprid1 20954 lsppratlem3 21110 lsppratlem4 21111 ex-dif 30404 ex-un 30405 ex-in 30406 idlsrgtset 33523 coinflippv 34516 pthhashvtx 35150 subfacp1lem2a 35202 altopthsn 35979 rankaltopb 35997 dvh3dim3N 41468 mapdindp2 41740 lspindp5 41789 algsca 43201 clsk1indlem2 44066 clsk1indlem3 44067 clsk1indlem1 44069 mnuprdlem4 44299 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |