![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4651 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pr 4651 |
This theorem is referenced by: snsstp1 4841 op1stb 5491 uniop 5534 1sdom2dom 9310 rankopb 9921 ltrelxr 11351 seqexw 14068 2strbas 17281 2strbas1 17285 phlvsca 17409 prdshom 17527 ipobas 18601 ipolerval 18602 gsumpr 19997 lspprid1 21018 lsppratlem3 21174 lsppratlem4 21175 ex-dif 30455 ex-un 30456 ex-in 30457 idlsrgtset 33501 coinflippv 34448 pthhashvtx 35095 subfacp1lem2a 35148 altopthsn 35925 rankaltopb 35943 dvh3dim3N 41406 mapdindp2 41678 lspindp5 41727 algsca 43138 clsk1indlem2 44004 clsk1indlem3 44005 clsk1indlem1 44007 mnuprdlem4 44244 |
Copyright terms: Public domain | W3C validator |