![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4168 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4627 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4015 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3943 ⊆ wss 3945 {csn 4624 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-in 3952 df-ss 3962 df-pr 4627 |
This theorem is referenced by: snsstp1 4815 op1stb 5467 uniop 5511 1sdom2dom 9265 rankopb 9869 ltrelxr 11299 seqexw 14008 2strbas 17196 2strbas1 17200 phlvsca 17324 prdshom 17442 ipobas 18516 ipolerval 18517 gsumpr 19903 lspprid1 20874 lsppratlem3 21030 lsppratlem4 21031 ex-dif 30226 ex-un 30227 ex-in 30228 idlsrgtset 33213 coinflippv 34097 pthhashvtx 34731 subfacp1lem2a 34784 altopthsn 35551 rankaltopb 35569 dvh3dim3N 40916 mapdindp2 41188 lspindp5 41237 algsca 42599 clsk1indlem2 43466 clsk1indlem3 43467 clsk1indlem1 43469 mnuprdlem4 43706 |
Copyright terms: Public domain | W3C validator |