| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4151 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4602 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 4006 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3922 ⊆ wss 3924 {csn 4599 {cpr 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-ss 3941 df-pr 4602 |
| This theorem is referenced by: snsstp1 4789 op1stb 5443 uniop 5487 1sdom2dom 9249 rankopb 9858 ltrelxr 11288 seqexw 14024 2strbas 17234 phlvsca 17349 prdshom 17466 ipobas 18526 ipolerval 18527 gsumpr 19921 lspprid1 20939 lsppratlem3 21095 lsppratlem4 21096 ex-dif 30336 ex-un 30337 ex-in 30338 idlsrgtset 33441 coinflippv 34424 pthhashvtx 35071 subfacp1lem2a 35123 altopthsn 35900 rankaltopb 35918 dvh3dim3N 41389 mapdindp2 41661 lspindp5 41710 algsca 43126 clsk1indlem2 43991 clsk1indlem3 43992 clsk1indlem1 43994 mnuprdlem4 44225 |
| Copyright terms: Public domain | W3C validator |