Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4112 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4568 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3963 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3890 ⊆ wss 3892 {csn 4565 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-pr 4568 |
This theorem is referenced by: snsstp1 4755 op1stb 5399 uniop 5442 1sdom2dom 9068 rankopb 9658 ltrelxr 11086 seqexw 13787 2strbas 16984 2strbas1 16988 phlvsca 17109 prdshom 17227 ipobas 18298 ipolerval 18299 gsumpr 19605 lspprid1 20308 lsppratlem3 20460 lsppratlem4 20461 ex-dif 28836 ex-un 28837 ex-in 28838 idlsrgtset 31702 coinflippv 32499 pthhashvtx 33138 subfacp1lem2a 33191 altopthsn 34312 rankaltopb 34330 dvh3dim3N 39663 mapdindp2 39935 lspindp5 39984 algsca 41202 clsk1indlem2 41865 clsk1indlem3 41866 clsk1indlem1 41868 mnuprdlem4 42106 |
Copyright terms: Public domain | W3C validator |