| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4595 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-pr 4595 |
| This theorem is referenced by: snsstp1 4783 op1stb 5434 uniop 5478 1sdom2dom 9201 rankopb 9812 ltrelxr 11242 seqexw 13989 2strbas 17205 phlvsca 17320 prdshom 17437 ipobas 18497 ipolerval 18498 gsumpr 19892 lspprid1 20910 lsppratlem3 21066 lsppratlem4 21067 ex-dif 30359 ex-un 30360 ex-in 30361 idlsrgtset 33486 coinflippv 34482 pthhashvtx 35122 subfacp1lem2a 35174 altopthsn 35956 rankaltopb 35974 dvh3dim3N 41450 mapdindp2 41722 lspindp5 41771 algsca 43173 clsk1indlem2 44038 clsk1indlem3 44039 clsk1indlem1 44041 mnuprdlem4 44271 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |