| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4129 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4580 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3985 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3901 ⊆ wss 3903 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-pr 4580 |
| This theorem is referenced by: snsstp1 4767 op1stb 5414 uniop 5458 1sdom2dom 9143 rankopb 9748 ltrelxr 11176 seqexw 13924 2strbas 17139 phlvsca 17254 prdshom 17371 ipobas 18437 ipolerval 18438 gsumpr 19834 lspprid1 20900 lsppratlem3 21056 lsppratlem4 21057 ex-dif 30367 ex-un 30368 ex-in 30369 idlsrgtset 33445 coinflippv 34452 pthhashvtx 35101 subfacp1lem2a 35153 altopthsn 35935 rankaltopb 35953 dvh3dim3N 41428 mapdindp2 41700 lspindp5 41749 algsca 43150 clsk1indlem2 44015 clsk1indlem3 44016 clsk1indlem1 44018 mnuprdlem4 44248 setc1onsubc 49587 |
| Copyright terms: Public domain | W3C validator |