| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4125 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4576 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3979 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pr 4576 |
| This theorem is referenced by: snsstp1 4765 op1stb 5409 uniop 5453 1sdom2dom 9138 rankopb 9745 ltrelxr 11173 seqexw 13924 2strbas 17139 phlvsca 17254 prdshom 17371 ipobas 18437 ipolerval 18438 chnccat 18532 gsumpr 19867 lspprid1 20930 lsppratlem3 21086 lsppratlem4 21087 ex-dif 30403 ex-un 30404 ex-in 30405 idlsrgtset 33473 coinflippv 34497 pthhashvtx 35172 subfacp1lem2a 35224 altopthsn 36003 rankaltopb 36021 dvh3dim3N 41496 mapdindp2 41768 lspindp5 41817 algsca 43218 clsk1indlem2 44083 clsk1indlem3 44084 clsk1indlem1 44086 mnuprdlem4 44316 setc1onsubc 49642 |
| Copyright terms: Public domain | W3C validator |