Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsspr1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
snsspr1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4111 | . 2 ⊢ {𝐴} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4570 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3963 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3890 ⊆ wss 3892 {csn 4567 {cpr 4569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 df-in 3899 df-ss 3909 df-pr 4570 |
This theorem is referenced by: snsstp1 4755 op1stb 5390 uniop 5433 rankopb 9611 ltrelxr 11037 seqexw 13735 2strbas 16933 2strbas1 16937 phlvsca 17058 prdshom 17176 ipobas 18247 ipolerval 18248 gsumpr 19554 lspprid1 20257 lsppratlem3 20409 lsppratlem4 20410 ex-dif 28783 ex-un 28784 ex-in 28785 idlsrgtset 31649 coinflippv 32446 pthhashvtx 33085 subfacp1lem2a 33138 altopthsn 34259 rankaltopb 34277 dvh3dim3N 39459 mapdindp2 39731 lspindp5 39780 algsca 41003 clsk1indlem2 41622 clsk1indlem3 41623 clsk1indlem1 41625 mnuprdlem4 41863 |
Copyright terms: Public domain | W3C validator |