MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem1 Structured version   Visualization version   GIF version

Theorem fpwwe2lem1 10318
Description: Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
Assertion
Ref Expression
fpwwe2lem1 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2lem1
StepHypRef Expression
1 simpll 763 . . . . 5 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑥𝐴)
2 velpw 4535 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
31, 2sylibr 233 . . . 4 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑥 ∈ 𝒫 𝐴)
4 simplr 765 . . . . . 6 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ⊆ (𝑥 × 𝑥))
5 xpss12 5595 . . . . . . 7 ((𝑥𝐴𝑥𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
61, 1, 5syl2anc 583 . . . . . 6 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
74, 6sstrd 3927 . . . . 5 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ⊆ (𝐴 × 𝐴))
8 velpw 4535 . . . . 5 (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴))
97, 8sylibr 233 . . . 4 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
103, 9jca 511 . . 3 (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴)))
1110ssopab2i 5456 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⊆ {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
12 fpwwe2.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
13 df-xp 5586 . 2 (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) = {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
1411, 12, 133sstr4i 3960 1 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wral 3063  [wsbc 3711  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  {copab 5132   We wwe 5534   × cxp 5578  ccnv 5579  cima 5583  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-opab 5133  df-xp 5586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator