Proof of Theorem fpwwe2lem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . . . 5
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑥 ⊆ 𝐴) |
| 2 | | velpw 4585 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 3 | 1, 2 | sylibr 234 |
. . . 4
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑥 ∈ 𝒫 𝐴) |
| 4 | | simplr 768 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ⊆ (𝑥 × 𝑥)) |
| 5 | | xpss12 5680 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
| 6 | 1, 1, 5 | syl2anc 584 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
| 7 | 4, 6 | sstrd 3974 |
. . . . 5
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ⊆ (𝐴 × 𝐴)) |
| 8 | | velpw 4585 |
. . . . 5
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴)) |
| 9 | 7, 8 | sylibr 234 |
. . . 4
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
| 10 | 3, 9 | jca 511 |
. . 3
⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))) |
| 11 | 10 | ssopab2i 5535 |
. 2
⊢
{〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⊆ {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
| 12 | | fpwwe2.1 |
. 2
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 13 | | df-xp 5671 |
. 2
⊢
(𝒫 𝐴 ×
𝒫 (𝐴 × 𝐴)) = {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
| 14 | 11, 12, 13 | 3sstr4i 4015 |
1
⊢ 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) |