Proof of Theorem fpwwe2lem2
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2.1 |
. . . . 5
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 2 | 1 | relopabiv 5830 |
. . . 4
⊢ Rel 𝑊 |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → Rel 𝑊) |
| 4 | | brrelex12 5737 |
. . 3
⊢ ((Rel
𝑊 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 5 | 3, 4 | sylan 580 |
. 2
⊢ ((𝜑 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 6 | | fpwwe2.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝐴 ∈ 𝑉) |
| 8 | | simprll 779 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ⊆ 𝐴) |
| 9 | 7, 8 | ssexd 5324 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ∈ V) |
| 10 | 9, 9 | xpexd 7771 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 × 𝑋) ∈ V) |
| 11 | | simprlr 780 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋)) |
| 12 | 10, 11 | ssexd 5324 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ∈ V) |
| 13 | 9, 12 | jca 511 |
. 2
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
| 14 | | simpl 482 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑥 = 𝑋) |
| 15 | 14 | sseq1d 4015 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
| 16 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 17 | 14 | sqxpeqd 5717 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
| 18 | 16, 17 | sseq12d 4017 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋))) |
| 19 | 15, 18 | anbi12d 632 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)))) |
| 20 | 16, 14 | weeq12d 5674 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 We 𝑥 ↔ 𝑅 We 𝑋)) |
| 21 | 16 | cnveqd 5886 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ◡𝑟 = ◡𝑅) |
| 22 | 21 | imaeq1d 6077 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (◡𝑟 “ {𝑦}) = (◡𝑅 “ {𝑦})) |
| 23 | 16 | ineq1d 4219 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ (𝑢 × 𝑢))) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢)))) |
| 25 | 24 | eqeq1d 2739 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 26 | 22, 25 | sbceqbid 3795 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ([(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 27 | 14, 26 | raleqbidv 3346 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 28 | 20, 27 | anbi12d 632 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 29 | 19, 28 | anbi12d 632 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 30 | 29, 1 | brabga 5539 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 31 | 5, 13, 30 | pm5.21nd 802 |
1
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |