Proof of Theorem fpwwe2lem2
Step | Hyp | Ref
| Expression |
1 | | fpwwe2.1 |
. . . . 5
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
2 | 1 | relopabiv 5730 |
. . . 4
⊢ Rel 𝑊 |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → Rel 𝑊) |
4 | | brrelex12 5639 |
. . 3
⊢ ((Rel
𝑊 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
5 | 3, 4 | sylan 580 |
. 2
⊢ ((𝜑 ∧ 𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
6 | | fpwwe2.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝐴 ∈ 𝑉) |
8 | | simprll 776 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ⊆ 𝐴) |
9 | 7, 8 | ssexd 5248 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ∈ V) |
10 | 9, 9 | xpexd 7601 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 × 𝑋) ∈ V) |
11 | | simprlr 777 |
. . . 4
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋)) |
12 | 10, 11 | ssexd 5248 |
. . 3
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ∈ V) |
13 | 9, 12 | jca 512 |
. 2
⊢ ((𝜑 ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V)) |
14 | | simpl 483 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑥 = 𝑋) |
15 | 14 | sseq1d 3952 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
16 | | simpr 485 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
17 | 14 | sqxpeqd 5621 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋)) |
18 | 16, 17 | sseq12d 3954 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋))) |
19 | 15, 18 | anbi12d 631 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)))) |
20 | | weeq2 5578 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑋)) |
21 | | weeq1 5577 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 We 𝑋 ↔ 𝑅 We 𝑋)) |
22 | 20, 21 | sylan9bb 510 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 We 𝑥 ↔ 𝑅 We 𝑋)) |
23 | 16 | cnveqd 5784 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ◡𝑟 = ◡𝑅) |
24 | 23 | imaeq1d 5968 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (◡𝑟 “ {𝑦}) = (◡𝑅 “ {𝑦})) |
25 | 16 | ineq1d 4145 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ (𝑢 × 𝑢))) |
26 | 25 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢)))) |
27 | 26 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
28 | 24, 27 | sbceqbid 3723 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ([(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
29 | 14, 28 | raleqbidv 3336 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
30 | 22, 29 | anbi12d 631 |
. . . 4
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
31 | 19, 30 | anbi12d 631 |
. . 3
⊢ ((𝑥 = 𝑋 ∧ 𝑟 = 𝑅) → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
32 | 31, 1 | brabga 5447 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
33 | 5, 13, 32 | pm5.21nd 799 |
1
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |