MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem2 Structured version   Visualization version   GIF version

Theorem fpwwe2lem2 10669
Description: Lemma for fpwwe2 10680. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
fpwwe2lem2 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem2
StepHypRef Expression
1 fpwwe2.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabiv 5832 . . . 4 Rel 𝑊
32a1i 11 . . 3 (𝜑 → Rel 𝑊)
4 brrelex12 5740 . . 3 ((Rel 𝑊𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
53, 4sylan 580 . 2 ((𝜑𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
6 fpwwe2.2 . . . . 5 (𝜑𝐴𝑉)
76adantr 480 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝐴𝑉)
8 simprll 779 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋𝐴)
97, 8ssexd 5329 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ∈ V)
109, 9xpexd 7769 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 × 𝑋) ∈ V)
11 simprlr 780 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋))
1210, 11ssexd 5329 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ∈ V)
139, 12jca 511 . 2 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
14 simpl 482 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑥 = 𝑋)
1514sseq1d 4026 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐴𝑋𝐴))
16 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
1714sqxpeqd 5720 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1816, 17sseq12d 4028 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
1915, 18anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋))))
2016, 14weeq12d 5677 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 We 𝑥𝑅 We 𝑋))
2116cnveqd 5888 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
2221imaeq1d 6078 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 “ {𝑦}) = (𝑅 “ {𝑦}))
2316ineq1d 4226 . . . . . . . . 9 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ (𝑢 × 𝑢)))
2423oveq2d 7446 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))))
2524eqeq1d 2736 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
2622, 25sbceqbid 3797 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
2714, 26raleqbidv 3343 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
2820, 27anbi12d 632 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
2919, 28anbi12d 632 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
3029, 1brabga 5543 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
315, 13, 30pm5.21nd 802 1 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  [wsbc 3790  cin 3961  wss 3962  {csn 4630   class class class wbr 5147  {copab 5209   We wwe 5639   × cxp 5686  ccnv 5687  cima 5691  Rel wrel 5693  (class class class)co 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fv 6570  df-ov 7433
This theorem is referenced by:  fpwwe2lem3  10670  fpwwe2lem5  10672  fpwwe2lem6  10673  fpwwe2lem8  10675  fpwwe2lem10  10677  fpwwe2lem11  10678  fpwwe2lem12  10679  fpwwe2  10680  canthwelem  10687  pwfseqlem4  10699
  Copyright terms: Public domain W3C validator