MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem2 Structured version   Visualization version   GIF version

Theorem fpwwe2lem2 10319
Description: Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
fpwwe2lem2 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem2
StepHypRef Expression
1 fpwwe2.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabiv 5719 . . . 4 Rel 𝑊
32a1i 11 . . 3 (𝜑 → Rel 𝑊)
4 brrelex12 5630 . . 3 ((Rel 𝑊𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
53, 4sylan 579 . 2 ((𝜑𝑋𝑊𝑅) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
6 fpwwe2.2 . . . . 5 (𝜑𝐴𝑉)
76adantr 480 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝐴𝑉)
8 simprll 775 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋𝐴)
97, 8ssexd 5243 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑋 ∈ V)
109, 9xpexd 7579 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 × 𝑋) ∈ V)
11 simprlr 776 . . . 4 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ⊆ (𝑋 × 𝑋))
1210, 11ssexd 5243 . . 3 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → 𝑅 ∈ V)
139, 12jca 511 . 2 ((𝜑 ∧ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) → (𝑋 ∈ V ∧ 𝑅 ∈ V))
14 simpl 482 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑥 = 𝑋)
1514sseq1d 3948 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥𝐴𝑋𝐴))
16 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
1714sqxpeqd 5612 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑥 × 𝑥) = (𝑋 × 𝑋))
1816, 17sseq12d 3950 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑅 ⊆ (𝑋 × 𝑋)))
1915, 18anbi12d 630 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋))))
20 weeq2 5569 . . . . . 6 (𝑥 = 𝑋 → (𝑟 We 𝑥𝑟 We 𝑋))
21 weeq1 5568 . . . . . 6 (𝑟 = 𝑅 → (𝑟 We 𝑋𝑅 We 𝑋))
2220, 21sylan9bb 509 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 We 𝑥𝑅 We 𝑋))
2316cnveqd 5773 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → 𝑟 = 𝑅)
2423imaeq1d 5957 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 “ {𝑦}) = (𝑅 “ {𝑦}))
2516ineq1d 4142 . . . . . . . . 9 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ (𝑢 × 𝑢)))
2625oveq2d 7271 . . . . . . . 8 ((𝑥 = 𝑋𝑟 = 𝑅) → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))))
2726eqeq1d 2740 . . . . . . 7 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
2824, 27sbceqbid 3718 . . . . . 6 ((𝑥 = 𝑋𝑟 = 𝑅) → ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
2914, 28raleqbidv 3327 . . . . 5 ((𝑥 = 𝑋𝑟 = 𝑅) → (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))
3022, 29anbi12d 630 . . . 4 ((𝑥 = 𝑋𝑟 = 𝑅) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
3119, 30anbi12d 630 . . 3 ((𝑥 = 𝑋𝑟 = 𝑅) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
3231, 1brabga 5440 . 2 ((𝑋 ∈ V ∧ 𝑅 ∈ V) → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
335, 13, 32pm5.21nd 798 1 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  [wsbc 3711  cin 3882  wss 3883  {csn 4558   class class class wbr 5070  {copab 5132   We wwe 5534   × cxp 5578  ccnv 5579  cima 5583  Rel wrel 5585  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  fpwwe2lem3  10320  fpwwe2lem5  10322  fpwwe2lem6  10323  fpwwe2lem8  10325  fpwwe2lem10  10327  fpwwe2lem11  10328  fpwwe2lem12  10329  fpwwe2  10330  canthwelem  10337  pwfseqlem4  10349
  Copyright terms: Public domain W3C validator