Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvifeq Structured version   Visualization version   GIF version

Theorem fvifeq 44659
Description: Equality of function values with conditional arguments, see also fvif 6772. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
fvifeq (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))

Proof of Theorem fvifeq
StepHypRef Expression
1 fveq2 6756 . 2 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶)))
2 fvif 6772 . 2 (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹𝐵), (𝐹𝐶))
31, 2eqtrdi 2795 1 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ifcif 4456  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator