| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvifeq | Structured version Visualization version GIF version | ||
| Description: Equality of function values with conditional arguments, see also fvif 6902. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| Ref | Expression |
|---|---|
| fvifeq | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . 2 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶))) | |
| 2 | fvif 6902 | . 2 ⊢ (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶)) | |
| 3 | 1, 2 | eqtrdi 2785 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ifcif 4505 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |