Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvifeq Structured version   Visualization version   GIF version

Theorem fvifeq 47251
Description: Equality of function values with conditional arguments, see also fvif 6881. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
fvifeq (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))

Proof of Theorem fvifeq
StepHypRef Expression
1 fveq2 6865 . 2 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶)))
2 fvif 6881 . 2 (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹𝐵), (𝐹𝐶))
31, 2eqtrdi 2781 1 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4496  cfv 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator