![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvifeq | Structured version Visualization version GIF version |
Description: Equality of function values with conditional arguments, see also fvif 6907. (Contributed by Alexander van der Vekens, 21-May-2018.) |
Ref | Expression |
---|---|
fvifeq | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . 2 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶))) | |
2 | fvif 6907 | . 2 ⊢ (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶)) | |
3 | 1, 2 | eqtrdi 2787 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ifcif 4528 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |