Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvifeq Structured version   Visualization version   GIF version

Theorem fvifeq 44772
Description: Equality of function values with conditional arguments, see also fvif 6790. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
fvifeq (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))

Proof of Theorem fvifeq
StepHypRef Expression
1 fveq2 6774 . 2 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶)))
2 fvif 6790 . 2 (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹𝐵), (𝐹𝐶))
31, 2eqtrdi 2794 1 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹𝐴) = if(𝜑, (𝐹𝐵), (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ifcif 4459  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator