| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvifeq | Structured version Visualization version GIF version | ||
| Description: Equality of function values with conditional arguments, see also fvif 6838. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| Ref | Expression |
|---|---|
| fvifeq | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . 2 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶))) | |
| 2 | fvif 6838 | . 2 ⊢ (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶)) | |
| 3 | 1, 2 | eqtrdi 2782 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4472 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |