| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvifeq | Structured version Visualization version GIF version | ||
| Description: Equality of function values with conditional arguments, see also fvif 6881. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| Ref | Expression |
|---|---|
| fvifeq | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6865 | . 2 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = (𝐹‘if(𝜑, 𝐵, 𝐶))) | |
| 2 | fvif 6881 | . 2 ⊢ (𝐹‘if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶)) | |
| 3 | 1, 2 | eqtrdi 2781 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4496 ‘cfv 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |