Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   GIF version

Theorem rnfdmpr 45503
Description: The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))

Proof of Theorem rnfdmpr
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6902 . . . 4 (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
21adantl 482 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
3 fveq2 6842 . . . . . . . 8 (𝑖 = 𝑋 → (𝐹𝑖) = (𝐹𝑋))
43eqeq2d 2747 . . . . . . 7 (𝑖 = 𝑋 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑋)))
54abbidv 2805 . . . . . 6 (𝑖 = 𝑋 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑋)})
6 fveq2 6842 . . . . . . . 8 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
76eqeq2d 2747 . . . . . . 7 (𝑖 = 𝑌 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑌)))
87abbidv 2805 . . . . . 6 (𝑖 = 𝑌 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑌)})
95, 8iunxprg 5056 . . . . 5 ((𝑋𝑉𝑌𝑊) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
109adantr 481 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
11 iunab 5011 . . . 4 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)}
12 df-sn 4587 . . . . . . 7 {(𝐹𝑋)} = {𝑥𝑥 = (𝐹𝑋)}
1312eqcomi 2745 . . . . . 6 {𝑥𝑥 = (𝐹𝑋)} = {(𝐹𝑋)}
14 df-sn 4587 . . . . . . 7 {(𝐹𝑌)} = {𝑥𝑥 = (𝐹𝑌)}
1514eqcomi 2745 . . . . . 6 {𝑥𝑥 = (𝐹𝑌)} = {(𝐹𝑌)}
1613, 15uneq12i 4121 . . . . 5 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
17 df-pr 4589 . . . . 5 {(𝐹𝑋), (𝐹𝑌)} = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
1816, 17eqtr4i 2767 . . . 4 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = {(𝐹𝑋), (𝐹𝑌)}
1910, 11, 183eqtr3g 2799 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)} = {(𝐹𝑋), (𝐹𝑌)})
202, 19eqtrd 2776 . 2 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2120ex 413 1 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2713  wrex 3073  cun 3908  {csn 4586  {cpr 4588   ciun 4954  ran crn 5634   Fn wfn 6491  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504
This theorem is referenced by:  imarnf1pr  45504
  Copyright terms: Public domain W3C validator