Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   GIF version

Theorem rnfdmpr 47282
Description: The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))

Proof of Theorem rnfdmpr
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6920 . . . 4 (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
21adantl 481 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
3 fveq2 6858 . . . . . . . 8 (𝑖 = 𝑋 → (𝐹𝑖) = (𝐹𝑋))
43eqeq2d 2740 . . . . . . 7 (𝑖 = 𝑋 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑋)))
54abbidv 2795 . . . . . 6 (𝑖 = 𝑋 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑋)})
6 fveq2 6858 . . . . . . . 8 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
76eqeq2d 2740 . . . . . . 7 (𝑖 = 𝑌 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑌)))
87abbidv 2795 . . . . . 6 (𝑖 = 𝑌 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑌)})
95, 8iunxprg 5060 . . . . 5 ((𝑋𝑉𝑌𝑊) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
109adantr 480 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
11 iunab 5015 . . . 4 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)}
12 df-sn 4590 . . . . . . 7 {(𝐹𝑋)} = {𝑥𝑥 = (𝐹𝑋)}
1312eqcomi 2738 . . . . . 6 {𝑥𝑥 = (𝐹𝑋)} = {(𝐹𝑋)}
14 df-sn 4590 . . . . . . 7 {(𝐹𝑌)} = {𝑥𝑥 = (𝐹𝑌)}
1514eqcomi 2738 . . . . . 6 {𝑥𝑥 = (𝐹𝑌)} = {(𝐹𝑌)}
1613, 15uneq12i 4129 . . . . 5 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
17 df-pr 4592 . . . . 5 {(𝐹𝑋), (𝐹𝑌)} = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
1816, 17eqtr4i 2755 . . . 4 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = {(𝐹𝑋), (𝐹𝑌)}
1910, 11, 183eqtr3g 2787 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)} = {(𝐹𝑋), (𝐹𝑌)})
202, 19eqtrd 2764 . 2 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2120ex 412 1 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3912  {csn 4589  {cpr 4591   ciun 4955  ran crn 5639   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  imarnf1pr  47283
  Copyright terms: Public domain W3C validator