Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   GIF version

Theorem rnfdmpr 45976
Description: The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))

Proof of Theorem rnfdmpr
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6949 . . . 4 (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
21adantl 483 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
3 fveq2 6889 . . . . . . . 8 (𝑖 = 𝑋 → (𝐹𝑖) = (𝐹𝑋))
43eqeq2d 2744 . . . . . . 7 (𝑖 = 𝑋 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑋)))
54abbidv 2802 . . . . . 6 (𝑖 = 𝑋 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑋)})
6 fveq2 6889 . . . . . . . 8 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
76eqeq2d 2744 . . . . . . 7 (𝑖 = 𝑌 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑌)))
87abbidv 2802 . . . . . 6 (𝑖 = 𝑌 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑌)})
95, 8iunxprg 5099 . . . . 5 ((𝑋𝑉𝑌𝑊) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
109adantr 482 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
11 iunab 5054 . . . 4 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)}
12 df-sn 4629 . . . . . . 7 {(𝐹𝑋)} = {𝑥𝑥 = (𝐹𝑋)}
1312eqcomi 2742 . . . . . 6 {𝑥𝑥 = (𝐹𝑋)} = {(𝐹𝑋)}
14 df-sn 4629 . . . . . . 7 {(𝐹𝑌)} = {𝑥𝑥 = (𝐹𝑌)}
1514eqcomi 2742 . . . . . 6 {𝑥𝑥 = (𝐹𝑌)} = {(𝐹𝑌)}
1613, 15uneq12i 4161 . . . . 5 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
17 df-pr 4631 . . . . 5 {(𝐹𝑋), (𝐹𝑌)} = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
1816, 17eqtr4i 2764 . . . 4 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = {(𝐹𝑋), (𝐹𝑌)}
1910, 11, 183eqtr3g 2796 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)} = {(𝐹𝑋), (𝐹𝑌)})
202, 19eqtrd 2773 . 2 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2120ex 414 1 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  cun 3946  {csn 4628  {cpr 4630   ciun 4997  ran crn 5677   Fn wfn 6536  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6493  df-fun 6543  df-fn 6544  df-fv 6549
This theorem is referenced by:  imarnf1pr  45977
  Copyright terms: Public domain W3C validator