Step | Hyp | Ref
| Expression |
1 | | fnrnfv 6811 |
. . . 4
⊢ (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹‘𝑖)}) |
2 | 1 | adantl 481 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹‘𝑖)}) |
3 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 𝑋 → (𝐹‘𝑖) = (𝐹‘𝑋)) |
4 | 3 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑖 = 𝑋 → (𝑥 = (𝐹‘𝑖) ↔ 𝑥 = (𝐹‘𝑋))) |
5 | 4 | abbidv 2808 |
. . . . . 6
⊢ (𝑖 = 𝑋 → {𝑥 ∣ 𝑥 = (𝐹‘𝑖)} = {𝑥 ∣ 𝑥 = (𝐹‘𝑋)}) |
6 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 𝑌 → (𝐹‘𝑖) = (𝐹‘𝑌)) |
7 | 6 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑖 = 𝑌 → (𝑥 = (𝐹‘𝑖) ↔ 𝑥 = (𝐹‘𝑌))) |
8 | 7 | abbidv 2808 |
. . . . . 6
⊢ (𝑖 = 𝑌 → {𝑥 ∣ 𝑥 = (𝐹‘𝑖)} = {𝑥 ∣ 𝑥 = (𝐹‘𝑌)}) |
9 | 5, 8 | iunxprg 5021 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ∪
𝑖 ∈ {𝑋, 𝑌} {𝑥 ∣ 𝑥 = (𝐹‘𝑖)} = ({𝑥 ∣ 𝑥 = (𝐹‘𝑋)} ∪ {𝑥 ∣ 𝑥 = (𝐹‘𝑌)})) |
10 | 9 | adantr 480 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ∪ 𝑖 ∈ {𝑋, 𝑌} {𝑥 ∣ 𝑥 = (𝐹‘𝑖)} = ({𝑥 ∣ 𝑥 = (𝐹‘𝑋)} ∪ {𝑥 ∣ 𝑥 = (𝐹‘𝑌)})) |
11 | | iunab 4977 |
. . . 4
⊢ ∪ 𝑖 ∈ {𝑋, 𝑌} {𝑥 ∣ 𝑥 = (𝐹‘𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹‘𝑖)} |
12 | | df-sn 4559 |
. . . . . . 7
⊢ {(𝐹‘𝑋)} = {𝑥 ∣ 𝑥 = (𝐹‘𝑋)} |
13 | 12 | eqcomi 2747 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥 = (𝐹‘𝑋)} = {(𝐹‘𝑋)} |
14 | | df-sn 4559 |
. . . . . . 7
⊢ {(𝐹‘𝑌)} = {𝑥 ∣ 𝑥 = (𝐹‘𝑌)} |
15 | 14 | eqcomi 2747 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥 = (𝐹‘𝑌)} = {(𝐹‘𝑌)} |
16 | 13, 15 | uneq12i 4091 |
. . . . 5
⊢ ({𝑥 ∣ 𝑥 = (𝐹‘𝑋)} ∪ {𝑥 ∣ 𝑥 = (𝐹‘𝑌)}) = ({(𝐹‘𝑋)} ∪ {(𝐹‘𝑌)}) |
17 | | df-pr 4561 |
. . . . 5
⊢ {(𝐹‘𝑋), (𝐹‘𝑌)} = ({(𝐹‘𝑋)} ∪ {(𝐹‘𝑌)}) |
18 | 16, 17 | eqtr4i 2769 |
. . . 4
⊢ ({𝑥 ∣ 𝑥 = (𝐹‘𝑋)} ∪ {𝑥 ∣ 𝑥 = (𝐹‘𝑌)}) = {(𝐹‘𝑋), (𝐹‘𝑌)} |
19 | 10, 11, 18 | 3eqtr3g 2802 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹‘𝑖)} = {(𝐹‘𝑋), (𝐹‘𝑌)}) |
20 | 2, 19 | eqtrd 2778 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)}) |
21 | 20 | ex 412 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) |