Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnfdmpr Structured version   Visualization version   GIF version

Theorem rnfdmpr 44660
Description: The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
rnfdmpr ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))

Proof of Theorem rnfdmpr
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6811 . . . 4 (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
21adantl 481 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)})
3 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑋 → (𝐹𝑖) = (𝐹𝑋))
43eqeq2d 2749 . . . . . . 7 (𝑖 = 𝑋 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑋)))
54abbidv 2808 . . . . . 6 (𝑖 = 𝑋 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑋)})
6 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
76eqeq2d 2749 . . . . . . 7 (𝑖 = 𝑌 → (𝑥 = (𝐹𝑖) ↔ 𝑥 = (𝐹𝑌)))
87abbidv 2808 . . . . . 6 (𝑖 = 𝑌 → {𝑥𝑥 = (𝐹𝑖)} = {𝑥𝑥 = (𝐹𝑌)})
95, 8iunxprg 5021 . . . . 5 ((𝑋𝑉𝑌𝑊) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
109adantr 480 . . . 4 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}))
11 iunab 4977 . . . 4 𝑖 ∈ {𝑋, 𝑌} {𝑥𝑥 = (𝐹𝑖)} = {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)}
12 df-sn 4559 . . . . . . 7 {(𝐹𝑋)} = {𝑥𝑥 = (𝐹𝑋)}
1312eqcomi 2747 . . . . . 6 {𝑥𝑥 = (𝐹𝑋)} = {(𝐹𝑋)}
14 df-sn 4559 . . . . . . 7 {(𝐹𝑌)} = {𝑥𝑥 = (𝐹𝑌)}
1514eqcomi 2747 . . . . . 6 {𝑥𝑥 = (𝐹𝑌)} = {(𝐹𝑌)}
1613, 15uneq12i 4091 . . . . 5 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
17 df-pr 4561 . . . . 5 {(𝐹𝑋), (𝐹𝑌)} = ({(𝐹𝑋)} ∪ {(𝐹𝑌)})
1816, 17eqtr4i 2769 . . . 4 ({𝑥𝑥 = (𝐹𝑋)} ∪ {𝑥𝑥 = (𝐹𝑌)}) = {(𝐹𝑋), (𝐹𝑌)}
1910, 11, 183eqtr3g 2802 . . 3 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → {𝑥 ∣ ∃𝑖 ∈ {𝑋, 𝑌}𝑥 = (𝐹𝑖)} = {(𝐹𝑋), (𝐹𝑌)})
202, 19eqtrd 2778 . 2 (((𝑋𝑉𝑌𝑊) ∧ 𝐹 Fn {𝑋, 𝑌}) → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)})
2120ex 412 1 ((𝑋𝑉𝑌𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹𝑋), (𝐹𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  cun 3881  {csn 4558  {cpr 4560   ciun 4921  ran crn 5581   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  imarnf1pr  44661
  Copyright terms: Public domain W3C validator