| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
| 2 | fveq2 6861 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
| 3 | 1, 2 | ifsb 4505 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4491 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: ccatco 14808 sumeq2ii 15666 prodeq2ii 15884 ruclem1 16206 xpsrnbas 17541 rhmmpl 22277 rhmply1vr1 22281 mat2pmat1 22626 decpmatid 22664 pmatcollpwscmatlem1 22683 copco 24925 pcopt 24929 pcopt2 24930 limccnp 25799 prmorcht 27095 pclogsum 27133 mblfinlem2 37659 ftc1anclem8 37701 ftc1anc 37702 rhmpsr 42547 fvifeq 47285 |
| Copyright terms: Public domain | W3C validator |