| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
| 2 | fveq2 6822 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
| 3 | 1, 2 | ifsb 4489 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: ccatco 14739 sumeq2ii 15597 prodeq2ii 15815 ruclem1 16137 xpsrnbas 17472 rhmmpl 22296 rhmply1vr1 22300 mat2pmat1 22645 decpmatid 22683 pmatcollpwscmatlem1 22702 copco 24943 pcopt 24947 pcopt2 24948 limccnp 25817 prmorcht 27113 pclogsum 27151 esplyfv1 33585 mblfinlem2 37697 ftc1anclem8 37739 ftc1anc 37740 rhmpsr 42584 fvifeq 47310 |
| Copyright terms: Public domain | W3C validator |