MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvif Structured version   Visualization version   GIF version

Theorem fvif 6923
Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fvif (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))

Proof of Theorem fvif
StepHypRef Expression
1 fveq2 6907 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐴))
2 fveq2 6907 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐵))
31, 2ifsb 4544 1 (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ifcif 4531  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571
This theorem is referenced by:  ccatco  14871  sumeq2ii  15726  prodeq2ii  15944  ruclem1  16264  xpsrnbas  17618  rhmmpl  22403  rhmply1vr1  22407  mat2pmat1  22754  decpmatid  22792  pmatcollpwscmatlem1  22811  copco  25065  pcopt  25069  pcopt2  25070  limccnp  25941  prmorcht  27236  pclogsum  27274  mblfinlem2  37645  ftc1anclem8  37687  ftc1anc  37688  rhmpsr  42539  fvifeq  47230
  Copyright terms: Public domain W3C validator