![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
2 | fveq2 6907 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
3 | 1, 2 | ifsb 4544 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: ccatco 14871 sumeq2ii 15726 prodeq2ii 15944 ruclem1 16264 xpsrnbas 17618 rhmmpl 22403 rhmply1vr1 22407 mat2pmat1 22754 decpmatid 22792 pmatcollpwscmatlem1 22811 copco 25065 pcopt 25069 pcopt2 25070 limccnp 25941 prmorcht 27236 pclogsum 27274 mblfinlem2 37645 ftc1anclem8 37687 ftc1anc 37688 rhmpsr 42539 fvifeq 47230 |
Copyright terms: Public domain | W3C validator |