| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
| 2 | fveq2 6858 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
| 3 | 1, 2 | ifsb 4502 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4488 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: ccatco 14801 sumeq2ii 15659 prodeq2ii 15877 ruclem1 16199 xpsrnbas 17534 rhmmpl 22270 rhmply1vr1 22274 mat2pmat1 22619 decpmatid 22657 pmatcollpwscmatlem1 22676 copco 24918 pcopt 24922 pcopt2 24923 limccnp 25792 prmorcht 27088 pclogsum 27126 mblfinlem2 37652 ftc1anclem8 37694 ftc1anc 37695 rhmpsr 42540 fvifeq 47281 |
| Copyright terms: Public domain | W3C validator |