MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvif Structured version   Visualization version   GIF version

Theorem fvif 6790
Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fvif (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))

Proof of Theorem fvif
StepHypRef Expression
1 fveq2 6774 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐴))
2 fveq2 6774 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐵))
31, 2ifsb 4472 1 (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ifcif 4459  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  ccatco  14548  sumeq2ii  15405  prodeq2ii  15623  ruclem1  15940  xpsrnbas  17282  mat2pmat1  21881  decpmatid  21919  pmatcollpwscmatlem1  21938  copco  24181  pcopt  24185  pcopt2  24186  limccnp  25055  prmorcht  26327  pclogsum  26363  mblfinlem2  35815  ftc1anclem8  35857  ftc1anc  35858  fvifeq  44772
  Copyright terms: Public domain W3C validator