| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
| 2 | fveq2 6876 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
| 3 | 1, 2 | ifsb 4514 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4500 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: ccatco 14854 sumeq2ii 15709 prodeq2ii 15927 ruclem1 16249 xpsrnbas 17585 rhmmpl 22321 rhmply1vr1 22325 mat2pmat1 22670 decpmatid 22708 pmatcollpwscmatlem1 22727 copco 24969 pcopt 24973 pcopt2 24974 limccnp 25844 prmorcht 27140 pclogsum 27178 mblfinlem2 37682 ftc1anclem8 37724 ftc1anc 37725 rhmpsr 42575 fvifeq 47309 |
| Copyright terms: Public domain | W3C validator |