MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvif Structured version   Visualization version   GIF version

Theorem fvif 6846
Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fvif (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))

Proof of Theorem fvif
StepHypRef Expression
1 fveq2 6830 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐴))
2 fveq2 6830 . 2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹𝐵))
31, 2ifsb 4491 1 (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ifcif 4478  cfv 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-iota 6436  df-fv 6492
This theorem is referenced by:  ccatco  14648  sumeq2ii  15505  prodeq2ii  15723  ruclem1  16040  xpsrnbas  17380  mat2pmat1  21987  decpmatid  22025  pmatcollpwscmatlem1  22044  copco  24287  pcopt  24291  pcopt2  24292  limccnp  25161  prmorcht  26433  pclogsum  26469  mblfinlem2  35969  ftc1anclem8  36011  ftc1anc  36012  fvifeq  45188
  Copyright terms: Public domain W3C validator