![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvif | Structured version Visualization version GIF version |
Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fvif | ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐴)) | |
2 | fveq2 6920 | . 2 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = (𝐹‘𝐵)) | |
3 | 1, 2 | ifsb 4561 | 1 ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: ccatco 14884 sumeq2ii 15741 prodeq2ii 15959 ruclem1 16279 xpsrnbas 17631 rhmmpl 22408 rhmply1vr1 22412 mat2pmat1 22759 decpmatid 22797 pmatcollpwscmatlem1 22816 copco 25070 pcopt 25074 pcopt2 25075 limccnp 25946 prmorcht 27239 pclogsum 27277 mblfinlem2 37618 ftc1anclem8 37660 ftc1anc 37661 rhmpsr 42507 fvifeq 47195 |
Copyright terms: Public domain | W3C validator |