| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldcss | Structured version Visualization version GIF version | ||
| Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| Ref | Expression |
|---|---|
| cldcss.v | ⊢ 𝑉 = (Base‘𝑊) |
| cldcss.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cldcss.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| cldcss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cldcss | ⊢ (𝑊 ∈ ℂHil → (𝑈 ∈ 𝐶 ↔ (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlphl 25302 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | |
| 2 | cldcss.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | cldcss.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | csslss 21638 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝐶) → 𝑈 ∈ 𝐿) |
| 5 | 1, 4 | sylan 580 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶) → 𝑈 ∈ 𝐿) |
| 6 | hlcph 25301 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
| 7 | cldcss.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 8 | 2, 7 | csscld 25186 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝐶) → 𝑈 ∈ (Clsd‘𝐽)) |
| 9 | 6, 8 | sylan 580 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶) → 𝑈 ∈ (Clsd‘𝐽)) |
| 10 | 5, 9 | jca 511 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶) → (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽))) |
| 11 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (proj‘𝑊) = (proj‘𝑊) | |
| 13 | 12, 2 | pjcss 21663 | . . . . 5 ⊢ (𝑊 ∈ PreHil → dom (proj‘𝑊) ⊆ 𝐶) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom (proj‘𝑊) ⊆ 𝐶) |
| 15 | 7, 3, 12 | pjth2 25377 | . . . 4 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ dom (proj‘𝑊)) |
| 16 | 14, 15 | sseldd 3932 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ 𝐶) |
| 17 | 16 | 3expb 1120 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽))) → 𝑈 ∈ 𝐶) |
| 18 | 10, 17 | impbida 800 | 1 ⊢ (𝑊 ∈ ℂHil → (𝑈 ∈ 𝐶 ↔ (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 dom cdm 5621 ‘cfv 6489 Basecbs 17130 TopOpenctopn 17335 LSubSpclss 20874 PreHilcphl 21571 ClSubSpccss 21608 projcpj 21647 Clsdccld 22941 ℂPreHilccph 25103 ℂHilchl 25271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-lsm 19558 df-pj1 19559 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-subrng 20471 df-subrg 20495 df-drng 20656 df-staf 20764 df-srng 20765 df-lmod 20805 df-lss 20875 df-lmhm 20966 df-lvec 21047 df-sra 21117 df-rgmod 21118 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-phl 21573 df-ipf 21574 df-ocv 21610 df-css 21611 df-pj 21650 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-cn 23152 df-cnp 23153 df-t1 23239 df-haus 23240 df-cmp 23312 df-tx 23487 df-hmeo 23680 df-fil 23771 df-flim 23864 df-fcls 23866 df-xms 24245 df-ms 24246 df-tms 24247 df-nm 24507 df-ngp 24508 df-tng 24509 df-nlm 24511 df-cncf 24808 df-clm 25000 df-cph 25105 df-tcph 25106 df-cfil 25192 df-cmet 25194 df-cms 25272 df-bn 25273 df-hl 25274 |
| This theorem is referenced by: cldcss2 25379 |
| Copyright terms: Public domain | W3C validator |