MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Structured version   Visualization version   GIF version

Theorem pjthlem1 24039
Description: Lemma for pjth 24041. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.5 (𝜑𝐵𝑈)
pjthlem.7 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
pjthlem.8 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
Assertion
Ref Expression
pjthlem1 (𝜑 → (𝐴 , 𝐵) = 0)
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥,𝑇   𝑥,𝑊
Allowed substitution hints:   + (𝑥)   , (𝑥)   𝐿(𝑥)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4 (𝜑𝑊 ∈ ℂHil)
2 hlcph 23966 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ ℂPreHil)
4 pjthlem.4 . . 3 (𝜑𝐴𝑉)
5 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
6 pjthlem.v . . . . . 6 𝑉 = (Base‘𝑊)
7 pjthlem.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19703 . . . . 5 (𝑈𝐿𝑈𝑉)
95, 8syl 17 . . . 4 (𝜑𝑈𝑉)
10 pjthlem.5 . . . 4 (𝜑𝐵𝑈)
119, 10sseldd 3954 . . 3 (𝜑𝐵𝑉)
12 pjthlem.h . . . 4 , = (·𝑖𝑊)
136, 12cphipcl 23794 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
143, 4, 11, 13syl3anc 1368 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
1514abscld 14794 . . . 4 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℝ)
1615recnd 10663 . . 3 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℂ)
1715resqcld 13614 . . . . . . 7 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
1817renegcld 11061 . . . . . 6 (𝜑 → -((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
196, 12reipcl 23800 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → (𝐵 , 𝐵) ∈ ℝ)
203, 11, 19syl2anc 587 . . . . . . . 8 (𝜑 → (𝐵 , 𝐵) ∈ ℝ)
21 2re 11706 . . . . . . . 8 2 ∈ ℝ
22 readdcl 10614 . . . . . . . 8 (((𝐵 , 𝐵) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐵 , 𝐵) + 2) ∈ ℝ)
2320, 21, 22sylancl 589 . . . . . . 7 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ)
24 0red 10638 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 peano2re 10807 . . . . . . . . 9 ((𝐵 , 𝐵) ∈ ℝ → ((𝐵 , 𝐵) + 1) ∈ ℝ)
2620, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ)
276, 12ipge0 23801 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → 0 ≤ (𝐵 , 𝐵))
283, 11, 27syl2anc 587 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐵 , 𝐵))
2920ltp1d 11564 . . . . . . . . 9 (𝜑 → (𝐵 , 𝐵) < ((𝐵 , 𝐵) + 1))
3024, 20, 26, 28, 29lelttrd 10792 . . . . . . . 8 (𝜑 → 0 < ((𝐵 , 𝐵) + 1))
3126ltp1d 11564 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 1) < (((𝐵 , 𝐵) + 1) + 1))
3220recnd 10663 . . . . . . . . . . 11 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
33 ax-1cn 10589 . . . . . . . . . . . 12 1 ∈ ℂ
34 addass 10618 . . . . . . . . . . . 12 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3533, 33, 34mp3an23 1450 . . . . . . . . . . 11 ((𝐵 , 𝐵) ∈ ℂ → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3632, 35syl 17 . . . . . . . . . 10 (𝜑 → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
37 df-2 11695 . . . . . . . . . . 11 2 = (1 + 1)
3837oveq2i 7157 . . . . . . . . . 10 ((𝐵 , 𝐵) + 2) = ((𝐵 , 𝐵) + (1 + 1))
3936, 38syl6reqr 2878 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 2) = (((𝐵 , 𝐵) + 1) + 1))
4031, 39breqtrrd 5081 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) < ((𝐵 , 𝐵) + 2))
4124, 26, 23, 30, 40lttrd 10795 . . . . . . 7 (𝜑 → 0 < ((𝐵 , 𝐵) + 2))
4223, 41elrpd 12423 . . . . . 6 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ+)
43 oveq2 7154 . . . . . . . . . . . . . 14 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝐴 𝑥) = (𝐴 (𝑇( ·𝑠𝑊)𝐵)))
4443fveq2d 6663 . . . . . . . . . . . . 13 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
4544breq2d 5065 . . . . . . . . . . . 12 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → ((𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)) ↔ (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
46 pjthlem.7 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
47 cphlmod 23777 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
483, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LMod)
49 pjthlem.8 . . . . . . . . . . . . . 14 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
50 hlphl 23967 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
511, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ PreHil)
52 eqid 2824 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑊) = (Scalar‘𝑊)
53 eqid 2824 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5452, 12, 6, 53ipcl 20772 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5551, 4, 11, 54syl3anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5652, 53hlress 23970 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → ℝ ⊆ (Base‘(Scalar‘𝑊)))
571, 56syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ⊆ (Base‘(Scalar‘𝑊)))
5857, 26sseldd 3954 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)))
5920, 28ge0p1rpd 12456 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ+)
6059rpne0d 12431 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ≠ 0)
6152, 53cphdivcl 23785 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ ((𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ≠ 0)) → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
623, 55, 58, 60, 61syl13anc 1369 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
6349, 62eqeltrid 2920 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (Base‘(Scalar‘𝑊)))
64 eqid 2824 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6552, 64, 53, 7lssvscl 19722 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑈)) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6648, 5, 63, 10, 65syl22anc 837 . . . . . . . . . . . 12 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6745, 46, 66rspcdva 3611 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
68 cphngp 23776 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
693, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ NrmGrp)
70 pjthlem.n . . . . . . . . . . . . . 14 𝑁 = (norm‘𝑊)
716, 70nmcl 23220 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
7269, 4, 71syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑁𝐴) ∈ ℝ)
736, 52, 64, 53lmodvscl 19646 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
7448, 63, 11, 73syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
75 pjthlem.m . . . . . . . . . . . . . . 15 = (-g𝑊)
766, 75lmodvsubcl 19674 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
7748, 4, 74, 76syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
786, 70nmcl 23220 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
7969, 77, 78syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
806, 70nmge0 23221 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
8169, 4, 80syl2anc 587 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐴))
826, 70nmge0 23221 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8369, 77, 82syl2anc 587 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8472, 79, 81, 83le2sqd 13623 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8567, 84mpbid 235 . . . . . . . . . 10 (𝜑 → ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2))
8679resqcld 13614 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) ∈ ℝ)
8772resqcld 13614 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) ∈ ℝ)
8886, 87subge0d 11224 . . . . . . . . . 10 (𝜑 → (0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8985, 88mpbird 260 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
90 2z 12009 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
91 rpexpcl 13451 . . . . . . . . . . . . . . . 16 ((((𝐵 , 𝐵) + 1) ∈ ℝ+ ∧ 2 ∈ ℤ) → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9259, 90, 91sylancl 589 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9317, 92rerpdivcld 12457 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℝ)
9493, 23remulcld 10665 . . . . . . . . . . . . 13 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℝ)
9594recnd 10663 . . . . . . . . . . . 12 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
9695negcld 10978 . . . . . . . . . . 11 (𝜑 → -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
976, 12cphipcl 23794 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
983, 4, 4, 97syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
9996, 98pncand 10992 . . . . . . . . . 10 (𝜑 → ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
1006, 12, 70nmsq 23797 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
1013, 77, 100syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
10212, 6, 75cphsubdir 23811 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)) → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1033, 4, 74, 77, 102syl13anc 1369 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
10412, 6, 75cphsubdi 23812 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
1053, 4, 4, 74, 104syl13anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
106105oveq1d 7161 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1076, 12cphipcl 23794 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1083, 4, 74, 107syl3anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
10912, 6, 75cphsubdi 23812 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ ℂPreHil ∧ ((𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1103, 74, 4, 74, 109syl13anc 1369 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1116, 12cphipcl 23794 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1123, 74, 4, 111syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1136, 12cphipcl 23794 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1143, 74, 74, 113syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
115112, 114subcld 10991 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
116110, 115eqeltrd 2916 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
11798, 108, 116subsub4d 11022 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))))
11893recnd 10663 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℂ)
11926recnd 10663 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℂ)
120 1cnd 10630 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
121118, 119, 120adddid 10659 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
12239oveq2d 7162 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)))
12312, 6, 52, 53, 64cphassr 23815 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉𝐵𝑉)) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
1243, 63, 4, 11, 123syl13anc 1369 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
12514, 119, 60divcld 11410 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ ℂ)
12649, 125eqeltrid 2920 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
127126cjcld 14553 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘𝑇) ∈ ℂ)
128127, 14mulcomd 10656 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((∗‘𝑇) · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) · (∗‘𝑇)))
12914cjcld 14553 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘(𝐴 , 𝐵)) ∈ ℂ)
13014, 129, 119, 60divassd 11445 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
13114absvalsqd 14800 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = ((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))))
132131oveq1d 7161 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)))
13349fveq2i 6662 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘𝑇) = (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
13414, 119, 60cjdivd 14580 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))))
13526cjred 14583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∗‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
136135oveq2d 7162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
137134, 136eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
138133, 137syl5eq 2871 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘𝑇) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
139138oveq2d 7162 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
140130, 132, 1393eqtr4rd 2870 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
141124, 128, 1403eqtrd 2863 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
14217recnd 10663 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ)
143142, 119mulcomd 10656 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) = (((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)))
144119sqvald 13510 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) = (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1)))
145143, 144oveq12d 7164 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))))
146142, 119, 119, 60, 60divcan5d 11436 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
147145, 146eqtr2d 2860 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)))
14892rpcnd 12428 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℂ)
14992rpne0d 12431 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ≠ 0)
150142, 119, 148, 149div23d 11447 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
151141, 147, 1503eqtrd 2863 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15293, 26remulcld 10665 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) ∈ ℝ)
153151, 152eqeltrd 2916 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℝ)
154153cjred 14583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = (𝐴 , (𝑇( ·𝑠𝑊)𝐵)))
15512, 6cphipcj 23802 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
1563, 4, 74, 155syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
157154, 156, 1513eqtr3d 2867 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15812, 6, 52, 53, 64cph2ass 23816 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐵𝑉𝐵𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
1593, 63, 63, 11, 11, 158syl122anc 1376 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
16049fveq2i 6662 . . . . . . . . . . . . . . . . . . . . . . . 24 (abs‘𝑇) = (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
16114, 119, 60absdivd 14813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))))
16259rpge0d 12430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ ((𝐵 , 𝐵) + 1))
16326, 162absidd 14780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
164163oveq2d 7162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
165161, 164eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
166160, 165syl5eq 2871 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (abs‘𝑇) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
167166oveq1d 7161 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2))
168126absvalsqd 14800 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (𝑇 · (∗‘𝑇)))
16916, 119, 60sqdivd 13526 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
170167, 168, 1693eqtr3d 2867 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑇 · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
171170oveq1d 7161 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
172159, 171eqtrd 2859 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
173157, 172oveq12d 7164 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
174 pncan2 10887 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
17532, 33, 174sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
176175oveq2d 7162 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
177118, 119, 32subdid 11090 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
178176, 177eqtr3d 2861 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
179173, 110, 1783eqtr4d 2869 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
180151, 179oveq12d 7164 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
181121, 122, 1803eqtr4rd 2870 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
182181oveq2d 7162 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
183106, 117, 1823eqtrd 2863 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
184101, 103, 1833eqtrd 2863 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18598, 95negsubd 10997 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18698, 96addcomd 10836 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
187184, 185, 1863eqtr2d 2865 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
1886, 12, 70nmsq 23797 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
1893, 4, 188syl2anc 587 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
190187, 189oveq12d 7164 . . . . . . . . . 10 (𝜑 → (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) = ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)))
19123renegcld 11061 . . . . . . . . . . . . 13 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℝ)
192191recnd 10663 . . . . . . . . . . . 12 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℂ)
193142, 192, 148, 149div23d 11447 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)))
19423recnd 10663 . . . . . . . . . . . 12 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℂ)
195118, 194mulneg2d 11088 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
196193, 195eqtrd 2859 . . . . . . . . . 10 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
19799, 190, 1963eqtr4rd 2870 . . . . . . . . 9 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
19889, 197breqtrrd 5081 . . . . . . . 8 (𝜑 → 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)))
19917, 191remulcld 10665 . . . . . . . . 9 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ∈ ℝ)
200199, 92ge0divd 12464 . . . . . . . 8 (𝜑 → (0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ↔ 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2))))
201198, 200mpbird 260 . . . . . . 7 (𝜑 → 0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
202 mulneg12 11072 . . . . . . . 8 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ ∧ ((𝐵 , 𝐵) + 2) ∈ ℂ) → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
203142, 194, 202syl2anc 587 . . . . . . 7 (𝜑 → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
204201, 203breqtrrd 5081 . . . . . 6 (𝜑 → 0 ≤ (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)))
20518, 42, 204prodge0ld 12492 . . . . 5 (𝜑 → 0 ≤ -((abs‘(𝐴 , 𝐵))↑2))
20617le0neg1d 11205 . . . . 5 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ↔ 0 ≤ -((abs‘(𝐴 , 𝐵))↑2)))
207205, 206mpbird 260 . . . 4 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ≤ 0)
20815sqge0d 13615 . . . 4 (𝜑 → 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))
209 0re 10637 . . . . 5 0 ∈ ℝ
210 letri3 10720 . . . . 5 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
21117, 209, 210sylancl 589 . . . 4 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
212207, 208, 211mpbir2and 712 . . 3 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = 0)
21316, 212sqeq0d 13512 . 2 (𝜑 → (abs‘(𝐴 , 𝐵)) = 0)
21414, 213abs00d 14804 1 (𝜑 → (𝐴 , 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wss 3919   class class class wbr 5053  cfv 6344  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11687  cz 11976  +crp 12384  cexp 13432  ccj 14453  abscabs 14591  Basecbs 16481  +gcplusg 16563  Scalarcsca 16566   ·𝑠 cvsca 16567  ·𝑖cip 16568  -gcsg 18103  LModclmod 19629  LSubSpclss 19698  PreHilcphl 20763  normcnm 23181  NrmGrpcngp 23182  ℂPreHilccph 23769  ℂHilchl 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-mhm 17954  df-submnd 17955  df-grp 18104  df-minusg 18105  df-sbg 18106  df-mulg 18223  df-subg 18274  df-ghm 18354  df-cntz 18445  df-cmn 18906  df-mgp 19238  df-ur 19250  df-ring 19297  df-cring 19298  df-oppr 19371  df-dvdsr 19389  df-unit 19390  df-invr 19420  df-dvr 19431  df-rnghom 19465  df-drng 19499  df-subrg 19528  df-staf 19611  df-srng 19612  df-lmod 19631  df-lss 19699  df-lmhm 19789  df-lvec 19870  df-sra 19939  df-rgmod 19940  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-phl 20765  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-flim 22542  df-fcls 22544  df-xms 22925  df-ms 22926  df-tms 22927  df-nm 23187  df-ngp 23188  df-nlm 23191  df-cncf 23481  df-clm 23666  df-cph 23771  df-cfil 23857  df-cmet 23859  df-cms 23937  df-bn 23938  df-hl 23939
This theorem is referenced by:  pjthlem2  24040
  Copyright terms: Public domain W3C validator