MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Structured version   Visualization version   GIF version

Theorem pjthlem1 24339
Description: Lemma for pjth 24341. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.5 (𝜑𝐵𝑈)
pjthlem.7 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
pjthlem.8 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
Assertion
Ref Expression
pjthlem1 (𝜑 → (𝐴 , 𝐵) = 0)
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥,𝑇   𝑥,𝑊
Allowed substitution hints:   + (𝑥)   , (𝑥)   𝐿(𝑥)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4 (𝜑𝑊 ∈ ℂHil)
2 hlcph 24266 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ ℂPreHil)
4 pjthlem.4 . . 3 (𝜑𝐴𝑉)
5 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
6 pjthlem.v . . . . . 6 𝑉 = (Base‘𝑊)
7 pjthlem.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19978 . . . . 5 (𝑈𝐿𝑈𝑉)
95, 8syl 17 . . . 4 (𝜑𝑈𝑉)
10 pjthlem.5 . . . 4 (𝜑𝐵𝑈)
119, 10sseldd 3907 . . 3 (𝜑𝐵𝑉)
12 pjthlem.h . . . 4 , = (·𝑖𝑊)
136, 12cphipcl 24093 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
143, 4, 11, 13syl3anc 1373 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
1514abscld 15005 . . . 4 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℝ)
1615recnd 10866 . . 3 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℂ)
1715resqcld 13822 . . . . . . 7 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
1817renegcld 11264 . . . . . 6 (𝜑 → -((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
196, 12reipcl 24099 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → (𝐵 , 𝐵) ∈ ℝ)
203, 11, 19syl2anc 587 . . . . . . . 8 (𝜑 → (𝐵 , 𝐵) ∈ ℝ)
21 2re 11909 . . . . . . . 8 2 ∈ ℝ
22 readdcl 10817 . . . . . . . 8 (((𝐵 , 𝐵) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐵 , 𝐵) + 2) ∈ ℝ)
2320, 21, 22sylancl 589 . . . . . . 7 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ)
24 0red 10841 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 peano2re 11010 . . . . . . . . 9 ((𝐵 , 𝐵) ∈ ℝ → ((𝐵 , 𝐵) + 1) ∈ ℝ)
2620, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ)
276, 12ipge0 24100 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → 0 ≤ (𝐵 , 𝐵))
283, 11, 27syl2anc 587 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐵 , 𝐵))
2920ltp1d 11767 . . . . . . . . 9 (𝜑 → (𝐵 , 𝐵) < ((𝐵 , 𝐵) + 1))
3024, 20, 26, 28, 29lelttrd 10995 . . . . . . . 8 (𝜑 → 0 < ((𝐵 , 𝐵) + 1))
3126ltp1d 11767 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 1) < (((𝐵 , 𝐵) + 1) + 1))
32 df-2 11898 . . . . . . . . . . 11 2 = (1 + 1)
3332oveq2i 7229 . . . . . . . . . 10 ((𝐵 , 𝐵) + 2) = ((𝐵 , 𝐵) + (1 + 1))
3420recnd 10866 . . . . . . . . . . 11 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
35 ax-1cn 10792 . . . . . . . . . . . 12 1 ∈ ℂ
36 addass 10821 . . . . . . . . . . . 12 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3735, 35, 36mp3an23 1455 . . . . . . . . . . 11 ((𝐵 , 𝐵) ∈ ℂ → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3834, 37syl 17 . . . . . . . . . 10 (𝜑 → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3933, 38eqtr4id 2797 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 2) = (((𝐵 , 𝐵) + 1) + 1))
4031, 39breqtrrd 5086 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) < ((𝐵 , 𝐵) + 2))
4124, 26, 23, 30, 40lttrd 10998 . . . . . . 7 (𝜑 → 0 < ((𝐵 , 𝐵) + 2))
4223, 41elrpd 12630 . . . . . 6 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ+)
43 oveq2 7226 . . . . . . . . . . . . . 14 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝐴 𝑥) = (𝐴 (𝑇( ·𝑠𝑊)𝐵)))
4443fveq2d 6726 . . . . . . . . . . . . 13 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
4544breq2d 5070 . . . . . . . . . . . 12 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → ((𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)) ↔ (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
46 pjthlem.7 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
47 cphlmod 24076 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
483, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LMod)
49 pjthlem.8 . . . . . . . . . . . . . 14 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
50 hlphl 24267 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
511, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ PreHil)
52 eqid 2737 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑊) = (Scalar‘𝑊)
53 eqid 2737 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5452, 12, 6, 53ipcl 20600 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5551, 4, 11, 54syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5652, 53hlress 24270 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → ℝ ⊆ (Base‘(Scalar‘𝑊)))
571, 56syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ⊆ (Base‘(Scalar‘𝑊)))
5857, 26sseldd 3907 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)))
5920, 28ge0p1rpd 12663 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ+)
6059rpne0d 12638 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ≠ 0)
6152, 53cphdivcl 24084 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ ((𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ≠ 0)) → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
623, 55, 58, 60, 61syl13anc 1374 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
6349, 62eqeltrid 2842 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (Base‘(Scalar‘𝑊)))
64 eqid 2737 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6552, 64, 53, 7lssvscl 19997 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑈)) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6648, 5, 63, 10, 65syl22anc 839 . . . . . . . . . . . 12 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6745, 46, 66rspcdva 3544 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
68 cphngp 24075 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
693, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ NrmGrp)
70 pjthlem.n . . . . . . . . . . . . . 14 𝑁 = (norm‘𝑊)
716, 70nmcl 23519 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
7269, 4, 71syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑁𝐴) ∈ ℝ)
736, 52, 64, 53lmodvscl 19921 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
7448, 63, 11, 73syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
75 pjthlem.m . . . . . . . . . . . . . . 15 = (-g𝑊)
766, 75lmodvsubcl 19949 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
7748, 4, 74, 76syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
786, 70nmcl 23519 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
7969, 77, 78syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
806, 70nmge0 23520 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
8169, 4, 80syl2anc 587 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐴))
826, 70nmge0 23520 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8369, 77, 82syl2anc 587 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8472, 79, 81, 83le2sqd 13831 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8567, 84mpbid 235 . . . . . . . . . 10 (𝜑 → ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2))
8679resqcld 13822 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) ∈ ℝ)
8772resqcld 13822 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) ∈ ℝ)
8886, 87subge0d 11427 . . . . . . . . . 10 (𝜑 → (0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8985, 88mpbird 260 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
90 2z 12214 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
91 rpexpcl 13659 . . . . . . . . . . . . . . . 16 ((((𝐵 , 𝐵) + 1) ∈ ℝ+ ∧ 2 ∈ ℤ) → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9259, 90, 91sylancl 589 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9317, 92rerpdivcld 12664 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℝ)
9493, 23remulcld 10868 . . . . . . . . . . . . 13 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℝ)
9594recnd 10866 . . . . . . . . . . . 12 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
9695negcld 11181 . . . . . . . . . . 11 (𝜑 → -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
976, 12cphipcl 24093 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
983, 4, 4, 97syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
9996, 98pncand 11195 . . . . . . . . . 10 (𝜑 → ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
1006, 12, 70nmsq 24096 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
1013, 77, 100syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
10212, 6, 75cphsubdir 24110 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)) → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1033, 4, 74, 77, 102syl13anc 1374 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
10412, 6, 75cphsubdi 24111 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
1053, 4, 4, 74, 104syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
106105oveq1d 7233 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1076, 12cphipcl 24093 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1083, 4, 74, 107syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
10912, 6, 75cphsubdi 24111 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ ℂPreHil ∧ ((𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1103, 74, 4, 74, 109syl13anc 1374 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1116, 12cphipcl 24093 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1123, 74, 4, 111syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1136, 12cphipcl 24093 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1143, 74, 74, 113syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
115112, 114subcld 11194 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
116110, 115eqeltrd 2838 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
11798, 108, 116subsub4d 11225 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))))
11893recnd 10866 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℂ)
11926recnd 10866 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℂ)
120 1cnd 10833 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
121118, 119, 120adddid 10862 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
12239oveq2d 7234 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)))
12312, 6, 52, 53, 64cphassr 24114 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉𝐵𝑉)) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
1243, 63, 4, 11, 123syl13anc 1374 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
12514, 119, 60divcld 11613 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ ℂ)
12649, 125eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
127126cjcld 14764 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘𝑇) ∈ ℂ)
128127, 14mulcomd 10859 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((∗‘𝑇) · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) · (∗‘𝑇)))
12914cjcld 14764 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘(𝐴 , 𝐵)) ∈ ℂ)
13014, 129, 119, 60divassd 11648 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
13114absvalsqd 15011 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = ((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))))
132131oveq1d 7233 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)))
13349fveq2i 6725 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘𝑇) = (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
13414, 119, 60cjdivd 14791 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))))
13526cjred 14794 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∗‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
136135oveq2d 7234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
137134, 136eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
138133, 137syl5eq 2790 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘𝑇) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
139138oveq2d 7234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
140130, 132, 1393eqtr4rd 2788 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
141124, 128, 1403eqtrd 2781 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
14217recnd 10866 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ)
143142, 119mulcomd 10859 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) = (((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)))
144119sqvald 13718 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) = (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1)))
145143, 144oveq12d 7236 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))))
146142, 119, 119, 60, 60divcan5d 11639 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
147145, 146eqtr2d 2778 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)))
14892rpcnd 12635 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℂ)
14992rpne0d 12638 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ≠ 0)
150142, 119, 148, 149div23d 11650 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
151141, 147, 1503eqtrd 2781 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15293, 26remulcld 10868 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) ∈ ℝ)
153151, 152eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℝ)
154153cjred 14794 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = (𝐴 , (𝑇( ·𝑠𝑊)𝐵)))
15512, 6cphipcj 24101 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
1563, 4, 74, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
157154, 156, 1513eqtr3d 2785 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15812, 6, 52, 53, 64cph2ass 24115 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐵𝑉𝐵𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
1593, 63, 63, 11, 11, 158syl122anc 1381 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
16049fveq2i 6725 . . . . . . . . . . . . . . . . . . . . . . . 24 (abs‘𝑇) = (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
16114, 119, 60absdivd 15024 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))))
16259rpge0d 12637 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ ((𝐵 , 𝐵) + 1))
16326, 162absidd 14991 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
164163oveq2d 7234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
165161, 164eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
166160, 165syl5eq 2790 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (abs‘𝑇) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
167166oveq1d 7233 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2))
168126absvalsqd 15011 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (𝑇 · (∗‘𝑇)))
16916, 119, 60sqdivd 13734 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
170167, 168, 1693eqtr3d 2785 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑇 · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
171170oveq1d 7233 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
172159, 171eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
173157, 172oveq12d 7236 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
174 pncan2 11090 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
17534, 35, 174sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
176175oveq2d 7234 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
177118, 119, 34subdid 11293 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
178176, 177eqtr3d 2779 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
179173, 110, 1783eqtr4d 2787 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
180151, 179oveq12d 7236 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
181121, 122, 1803eqtr4rd 2788 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
182181oveq2d 7234 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
183106, 117, 1823eqtrd 2781 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
184101, 103, 1833eqtrd 2781 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18598, 95negsubd 11200 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18698, 96addcomd 11039 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
187184, 185, 1863eqtr2d 2783 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
1886, 12, 70nmsq 24096 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
1893, 4, 188syl2anc 587 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
190187, 189oveq12d 7236 . . . . . . . . . 10 (𝜑 → (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) = ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)))
19123renegcld 11264 . . . . . . . . . . . . 13 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℝ)
192191recnd 10866 . . . . . . . . . . . 12 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℂ)
193142, 192, 148, 149div23d 11650 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)))
19423recnd 10866 . . . . . . . . . . . 12 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℂ)
195118, 194mulneg2d 11291 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
196193, 195eqtrd 2777 . . . . . . . . . 10 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
19799, 190, 1963eqtr4rd 2788 . . . . . . . . 9 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
19889, 197breqtrrd 5086 . . . . . . . 8 (𝜑 → 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)))
19917, 191remulcld 10868 . . . . . . . . 9 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ∈ ℝ)
200199, 92ge0divd 12671 . . . . . . . 8 (𝜑 → (0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ↔ 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2))))
201198, 200mpbird 260 . . . . . . 7 (𝜑 → 0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
202 mulneg12 11275 . . . . . . . 8 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ ∧ ((𝐵 , 𝐵) + 2) ∈ ℂ) → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
203142, 194, 202syl2anc 587 . . . . . . 7 (𝜑 → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
204201, 203breqtrrd 5086 . . . . . 6 (𝜑 → 0 ≤ (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)))
20518, 42, 204prodge0ld 12699 . . . . 5 (𝜑 → 0 ≤ -((abs‘(𝐴 , 𝐵))↑2))
20617le0neg1d 11408 . . . . 5 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ↔ 0 ≤ -((abs‘(𝐴 , 𝐵))↑2)))
207205, 206mpbird 260 . . . 4 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ≤ 0)
20815sqge0d 13823 . . . 4 (𝜑 → 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))
209 0re 10840 . . . . 5 0 ∈ ℝ
210 letri3 10923 . . . . 5 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
21117, 209, 210sylancl 589 . . . 4 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
212207, 208, 211mpbir2and 713 . . 3 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = 0)
21316, 212sqeq0d 13720 . 2 (𝜑 → (abs‘(𝐴 , 𝐵)) = 0)
21414, 213abs00d 15015 1 (𝜑 → (𝐴 , 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wss 3871   class class class wbr 5058  cfv 6385  (class class class)co 7218  cc 10732  cr 10733  0cc0 10734  1c1 10735   + caddc 10737   · cmul 10739   < clt 10872  cle 10873  cmin 11067  -cneg 11068   / cdiv 11494  2c2 11890  cz 12181  +crp 12591  cexp 13640  ccj 14664  abscabs 14802  Basecbs 16765  +gcplusg 16807  Scalarcsca 16810   ·𝑠 cvsca 16811  ·𝑖cip 16812  -gcsg 18372  LModclmod 19904  LSubSpclss 19973  PreHilcphl 20591  normcnm 23479  NrmGrpcngp 23480  ℂPreHilccph 24068  ℂHilchl 24236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811  ax-pre-sup 10812  ax-addf 10813  ax-mulf 10814
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-iin 4912  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-se 5515  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-isom 6394  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-of 7474  df-om 7650  df-1st 7766  df-2nd 7767  df-supp 7909  df-tpos 7973  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-2o 8208  df-er 8396  df-map 8515  df-ixp 8584  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-fsupp 8991  df-fi 9032  df-sup 9063  df-inf 9064  df-oi 9131  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-div 11495  df-nn 11836  df-2 11898  df-3 11899  df-4 11900  df-5 11901  df-6 11902  df-7 11903  df-8 11904  df-9 11905  df-n0 12096  df-z 12182  df-dec 12299  df-uz 12444  df-q 12550  df-rp 12592  df-xneg 12709  df-xadd 12710  df-xmul 12711  df-ioo 12944  df-ico 12946  df-icc 12947  df-fz 13101  df-fzo 13244  df-seq 13580  df-exp 13641  df-hash 13902  df-cj 14667  df-re 14668  df-im 14669  df-sqrt 14803  df-abs 14804  df-struct 16705  df-sets 16722  df-slot 16740  df-ndx 16750  df-base 16766  df-ress 16790  df-plusg 16820  df-mulr 16821  df-starv 16822  df-sca 16823  df-vsca 16824  df-ip 16825  df-tset 16826  df-ple 16827  df-ds 16829  df-unif 16830  df-hom 16831  df-cco 16832  df-rest 16932  df-topn 16933  df-0g 16951  df-gsum 16952  df-topgen 16953  df-pt 16954  df-prds 16957  df-xrs 17012  df-qtop 17017  df-imas 17018  df-xps 17020  df-mre 17094  df-mrc 17095  df-acs 17097  df-mgm 18119  df-sgrp 18168  df-mnd 18179  df-mhm 18223  df-submnd 18224  df-grp 18373  df-minusg 18374  df-sbg 18375  df-mulg 18494  df-subg 18545  df-ghm 18625  df-cntz 18716  df-cmn 19177  df-mgp 19510  df-ur 19522  df-ring 19569  df-cring 19570  df-oppr 19646  df-dvdsr 19664  df-unit 19665  df-invr 19695  df-dvr 19706  df-rnghom 19740  df-drng 19774  df-subrg 19803  df-staf 19886  df-srng 19887  df-lmod 19906  df-lss 19974  df-lmhm 20064  df-lvec 20145  df-sra 20214  df-rgmod 20215  df-psmet 20360  df-xmet 20361  df-met 20362  df-bl 20363  df-mopn 20364  df-fbas 20365  df-fg 20366  df-cnfld 20369  df-phl 20593  df-top 21796  df-topon 21813  df-topsp 21835  df-bases 21848  df-cld 21921  df-ntr 21922  df-cls 21923  df-nei 22000  df-cn 22129  df-cnp 22130  df-haus 22217  df-cmp 22289  df-tx 22464  df-hmeo 22657  df-fil 22748  df-flim 22841  df-fcls 22843  df-xms 23223  df-ms 23224  df-tms 23225  df-nm 23485  df-ngp 23486  df-nlm 23489  df-cncf 23780  df-clm 23965  df-cph 24070  df-cfil 24157  df-cmet 24159  df-cms 24237  df-bn 24238  df-hl 24239
This theorem is referenced by:  pjthlem2  24340
  Copyright terms: Public domain W3C validator