MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Structured version   Visualization version   GIF version

Theorem pjthlem1 25337
Description: Lemma for pjth 25339. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.5 (𝜑𝐵𝑈)
pjthlem.7 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
pjthlem.8 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
Assertion
Ref Expression
pjthlem1 (𝜑 → (𝐴 , 𝐵) = 0)
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥,𝑇   𝑥,𝑊
Allowed substitution hints:   + (𝑥)   , (𝑥)   𝐿(𝑥)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4 (𝜑𝑊 ∈ ℂHil)
2 hlcph 25264 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ ℂPreHil)
4 pjthlem.4 . . 3 (𝜑𝐴𝑉)
5 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
6 pjthlem.v . . . . . 6 𝑉 = (Base‘𝑊)
7 pjthlem.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
86, 7lssss 20842 . . . . 5 (𝑈𝐿𝑈𝑉)
95, 8syl 17 . . . 4 (𝜑𝑈𝑉)
10 pjthlem.5 . . . 4 (𝜑𝐵𝑈)
119, 10sseldd 3947 . . 3 (𝜑𝐵𝑉)
12 pjthlem.h . . . 4 , = (·𝑖𝑊)
136, 12cphipcl 25091 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
143, 4, 11, 13syl3anc 1373 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
1514abscld 15405 . . . 4 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℝ)
1615recnd 11202 . . 3 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℂ)
1715resqcld 14090 . . . . . . 7 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
1817renegcld 11605 . . . . . 6 (𝜑 → -((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
196, 12reipcl 25097 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → (𝐵 , 𝐵) ∈ ℝ)
203, 11, 19syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 , 𝐵) ∈ ℝ)
21 2re 12260 . . . . . . . 8 2 ∈ ℝ
22 readdcl 11151 . . . . . . . 8 (((𝐵 , 𝐵) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐵 , 𝐵) + 2) ∈ ℝ)
2320, 21, 22sylancl 586 . . . . . . 7 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ)
24 0red 11177 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 peano2re 11347 . . . . . . . . 9 ((𝐵 , 𝐵) ∈ ℝ → ((𝐵 , 𝐵) + 1) ∈ ℝ)
2620, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ)
276, 12ipge0 25098 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → 0 ≤ (𝐵 , 𝐵))
283, 11, 27syl2anc 584 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐵 , 𝐵))
2920ltp1d 12113 . . . . . . . . 9 (𝜑 → (𝐵 , 𝐵) < ((𝐵 , 𝐵) + 1))
3024, 20, 26, 28, 29lelttrd 11332 . . . . . . . 8 (𝜑 → 0 < ((𝐵 , 𝐵) + 1))
3126ltp1d 12113 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 1) < (((𝐵 , 𝐵) + 1) + 1))
32 df-2 12249 . . . . . . . . . . 11 2 = (1 + 1)
3332oveq2i 7398 . . . . . . . . . 10 ((𝐵 , 𝐵) + 2) = ((𝐵 , 𝐵) + (1 + 1))
3420recnd 11202 . . . . . . . . . . 11 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
35 ax-1cn 11126 . . . . . . . . . . . 12 1 ∈ ℂ
36 addass 11155 . . . . . . . . . . . 12 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3735, 35, 36mp3an23 1455 . . . . . . . . . . 11 ((𝐵 , 𝐵) ∈ ℂ → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3834, 37syl 17 . . . . . . . . . 10 (𝜑 → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3933, 38eqtr4id 2783 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 2) = (((𝐵 , 𝐵) + 1) + 1))
4031, 39breqtrrd 5135 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) < ((𝐵 , 𝐵) + 2))
4124, 26, 23, 30, 40lttrd 11335 . . . . . . 7 (𝜑 → 0 < ((𝐵 , 𝐵) + 2))
4223, 41elrpd 12992 . . . . . 6 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ+)
43 oveq2 7395 . . . . . . . . . . . . . 14 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝐴 𝑥) = (𝐴 (𝑇( ·𝑠𝑊)𝐵)))
4443fveq2d 6862 . . . . . . . . . . . . 13 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
4544breq2d 5119 . . . . . . . . . . . 12 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → ((𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)) ↔ (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
46 pjthlem.7 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
47 cphlmod 25074 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
483, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LMod)
49 pjthlem.8 . . . . . . . . . . . . . 14 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
50 hlphl 25265 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
511, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ PreHil)
52 eqid 2729 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑊) = (Scalar‘𝑊)
53 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5452, 12, 6, 53ipcl 21542 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5551, 4, 11, 54syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5652, 53hlress 25268 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → ℝ ⊆ (Base‘(Scalar‘𝑊)))
571, 56syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ⊆ (Base‘(Scalar‘𝑊)))
5857, 26sseldd 3947 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)))
5920, 28ge0p1rpd 13025 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ+)
6059rpne0d 13000 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ≠ 0)
6152, 53cphdivcl 25082 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ ((𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ≠ 0)) → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
623, 55, 58, 60, 61syl13anc 1374 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
6349, 62eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (Base‘(Scalar‘𝑊)))
64 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6552, 64, 53, 7lssvscl 20861 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑈)) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6648, 5, 63, 10, 65syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6745, 46, 66rspcdva 3589 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
68 cphngp 25073 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
693, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ NrmGrp)
70 pjthlem.n . . . . . . . . . . . . . 14 𝑁 = (norm‘𝑊)
716, 70nmcl 24504 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
7269, 4, 71syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑁𝐴) ∈ ℝ)
736, 52, 64, 53lmodvscl 20784 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
7448, 63, 11, 73syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
75 pjthlem.m . . . . . . . . . . . . . . 15 = (-g𝑊)
766, 75lmodvsubcl 20813 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
7748, 4, 74, 76syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
786, 70nmcl 24504 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
7969, 77, 78syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
806, 70nmge0 24505 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
8169, 4, 80syl2anc 584 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐴))
826, 70nmge0 24505 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8369, 77, 82syl2anc 584 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8472, 79, 81, 83le2sqd 14222 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8567, 84mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2))
8679resqcld 14090 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) ∈ ℝ)
8772resqcld 14090 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) ∈ ℝ)
8886, 87subge0d 11768 . . . . . . . . . 10 (𝜑 → (0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8985, 88mpbird 257 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
90 2z 12565 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
91 rpexpcl 14045 . . . . . . . . . . . . . . . 16 ((((𝐵 , 𝐵) + 1) ∈ ℝ+ ∧ 2 ∈ ℤ) → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9259, 90, 91sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9317, 92rerpdivcld 13026 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℝ)
9493, 23remulcld 11204 . . . . . . . . . . . . 13 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℝ)
9594recnd 11202 . . . . . . . . . . . 12 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
9695negcld 11520 . . . . . . . . . . 11 (𝜑 → -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
976, 12cphipcl 25091 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
983, 4, 4, 97syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
9996, 98pncand 11534 . . . . . . . . . 10 (𝜑 → ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
1006, 12, 70nmsq 25094 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
1013, 77, 100syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
10212, 6, 75cphsubdir 25108 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)) → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1033, 4, 74, 77, 102syl13anc 1374 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
10412, 6, 75cphsubdi 25109 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
1053, 4, 4, 74, 104syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
106105oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1076, 12cphipcl 25091 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1083, 4, 74, 107syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
10912, 6, 75cphsubdi 25109 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ ℂPreHil ∧ ((𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1103, 74, 4, 74, 109syl13anc 1374 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1116, 12cphipcl 25091 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1123, 74, 4, 111syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1136, 12cphipcl 25091 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1143, 74, 74, 113syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
115112, 114subcld 11533 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
116110, 115eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
11798, 108, 116subsub4d 11564 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))))
11893recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℂ)
11926recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℂ)
120 1cnd 11169 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
121118, 119, 120adddid 11198 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
12239oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)))
12312, 6, 52, 53, 64cphassr 25112 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉𝐵𝑉)) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
1243, 63, 4, 11, 123syl13anc 1374 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
12514, 119, 60divcld 11958 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ ℂ)
12649, 125eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
127126cjcld 15162 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘𝑇) ∈ ℂ)
128127, 14mulcomd 11195 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((∗‘𝑇) · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) · (∗‘𝑇)))
12914cjcld 15162 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘(𝐴 , 𝐵)) ∈ ℂ)
13014, 129, 119, 60divassd 11993 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
13114absvalsqd 15411 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = ((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))))
132131oveq1d 7402 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)))
13349fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘𝑇) = (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
13414, 119, 60cjdivd 15189 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))))
13526cjred 15192 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∗‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
136135oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
137134, 136eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
138133, 137eqtrid 2776 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘𝑇) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
139138oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
140130, 132, 1393eqtr4rd 2775 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
141124, 128, 1403eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
14217recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ)
143142, 119mulcomd 11195 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) = (((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)))
144119sqvald 14108 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) = (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1)))
145143, 144oveq12d 7405 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))))
146142, 119, 119, 60, 60divcan5d 11984 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
147145, 146eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)))
14892rpcnd 12997 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℂ)
14992rpne0d 13000 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ≠ 0)
150142, 119, 148, 149div23d 11995 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
151141, 147, 1503eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15293, 26remulcld 11204 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) ∈ ℝ)
153151, 152eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℝ)
154153cjred 15192 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = (𝐴 , (𝑇( ·𝑠𝑊)𝐵)))
15512, 6cphipcj 25099 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
1563, 4, 74, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
157154, 156, 1513eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15812, 6, 52, 53, 64cph2ass 25113 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐵𝑉𝐵𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
1593, 63, 63, 11, 11, 158syl122anc 1381 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
16049fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (abs‘𝑇) = (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
16114, 119, 60absdivd 15424 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))))
16259rpge0d 12999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ ((𝐵 , 𝐵) + 1))
16326, 162absidd 15389 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
164163oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
165161, 164eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
166160, 165eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (abs‘𝑇) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
167166oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2))
168126absvalsqd 15411 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (𝑇 · (∗‘𝑇)))
16916, 119, 60sqdivd 14124 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
170167, 168, 1693eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑇 · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
171170oveq1d 7402 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
172159, 171eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
173157, 172oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
174 pncan2 11428 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
17534, 35, 174sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
176175oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
177118, 119, 34subdid 11634 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
178176, 177eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
179173, 110, 1783eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
180151, 179oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
181121, 122, 1803eqtr4rd 2775 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
182181oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
183106, 117, 1823eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
184101, 103, 1833eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18598, 95negsubd 11539 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18698, 96addcomd 11376 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
187184, 185, 1863eqtr2d 2770 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
1886, 12, 70nmsq 25094 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
1893, 4, 188syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
190187, 189oveq12d 7405 . . . . . . . . . 10 (𝜑 → (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) = ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)))
19123renegcld 11605 . . . . . . . . . . . . 13 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℝ)
192191recnd 11202 . . . . . . . . . . . 12 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℂ)
193142, 192, 148, 149div23d 11995 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)))
19423recnd 11202 . . . . . . . . . . . 12 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℂ)
195118, 194mulneg2d 11632 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
196193, 195eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
19799, 190, 1963eqtr4rd 2775 . . . . . . . . 9 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
19889, 197breqtrrd 5135 . . . . . . . 8 (𝜑 → 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)))
19917, 191remulcld 11204 . . . . . . . . 9 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ∈ ℝ)
200199, 92ge0divd 13033 . . . . . . . 8 (𝜑 → (0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ↔ 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2))))
201198, 200mpbird 257 . . . . . . 7 (𝜑 → 0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
202 mulneg12 11616 . . . . . . . 8 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ ∧ ((𝐵 , 𝐵) + 2) ∈ ℂ) → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
203142, 194, 202syl2anc 584 . . . . . . 7 (𝜑 → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
204201, 203breqtrrd 5135 . . . . . 6 (𝜑 → 0 ≤ (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)))
20518, 42, 204prodge0ld 13061 . . . . 5 (𝜑 → 0 ≤ -((abs‘(𝐴 , 𝐵))↑2))
20617le0neg1d 11749 . . . . 5 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ↔ 0 ≤ -((abs‘(𝐴 , 𝐵))↑2)))
207205, 206mpbird 257 . . . 4 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ≤ 0)
20815sqge0d 14102 . . . 4 (𝜑 → 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))
209 0re 11176 . . . . 5 0 ∈ ℝ
210 letri3 11259 . . . . 5 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
21117, 209, 210sylancl 586 . . . 4 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
212207, 208, 211mpbir2and 713 . . 3 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = 0)
21316, 212sqeq0d 14110 . 2 (𝜑 → (abs‘(𝐴 , 𝐵)) = 0)
21414, 213abs00d 15415 1 (𝜑 → (𝐴 , 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  +crp 12951  cexp 14026  ccj 15062  abscabs 15200  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  ·𝑖cip 17225  -gcsg 18867  LModclmod 20766  LSubSpclss 20837  PreHilcphl 21533  normcnm 24464  NrmGrpcngp 24465  ℂPreHilccph 25066  ℂHilchl 25234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-phl 21535  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-flim 23826  df-fcls 23828  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-nlm 24474  df-cncf 24771  df-clm 24963  df-cph 25068  df-cfil 25155  df-cmet 25157  df-cms 25235  df-bn 25236  df-hl 25237
This theorem is referenced by:  pjthlem2  25338
  Copyright terms: Public domain W3C validator