MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Structured version   Visualization version   GIF version

Theorem pjthlem1 24040
Description: Lemma for pjth 24042. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.5 (𝜑𝐵𝑈)
pjthlem.7 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
pjthlem.8 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
Assertion
Ref Expression
pjthlem1 (𝜑 → (𝐴 , 𝐵) = 0)
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥,𝑇   𝑥,𝑊
Allowed substitution hints:   + (𝑥)   , (𝑥)   𝐿(𝑥)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4 (𝜑𝑊 ∈ ℂHil)
2 hlcph 23967 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
31, 2syl 17 . . 3 (𝜑𝑊 ∈ ℂPreHil)
4 pjthlem.4 . . 3 (𝜑𝐴𝑉)
5 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
6 pjthlem.v . . . . . 6 𝑉 = (Base‘𝑊)
7 pjthlem.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19708 . . . . 5 (𝑈𝐿𝑈𝑉)
95, 8syl 17 . . . 4 (𝜑𝑈𝑉)
10 pjthlem.5 . . . 4 (𝜑𝐵𝑈)
119, 10sseldd 3968 . . 3 (𝜑𝐵𝑉)
12 pjthlem.h . . . 4 , = (·𝑖𝑊)
136, 12cphipcl 23795 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
143, 4, 11, 13syl3anc 1367 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
1514abscld 14796 . . . 4 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℝ)
1615recnd 10669 . . 3 (𝜑 → (abs‘(𝐴 , 𝐵)) ∈ ℂ)
1715resqcld 13612 . . . . . . 7 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
1817renegcld 11067 . . . . . 6 (𝜑 → -((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ)
196, 12reipcl 23801 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → (𝐵 , 𝐵) ∈ ℝ)
203, 11, 19syl2anc 586 . . . . . . . 8 (𝜑 → (𝐵 , 𝐵) ∈ ℝ)
21 2re 11712 . . . . . . . 8 2 ∈ ℝ
22 readdcl 10620 . . . . . . . 8 (((𝐵 , 𝐵) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐵 , 𝐵) + 2) ∈ ℝ)
2320, 21, 22sylancl 588 . . . . . . 7 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ)
24 0red 10644 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
25 peano2re 10813 . . . . . . . . 9 ((𝐵 , 𝐵) ∈ ℝ → ((𝐵 , 𝐵) + 1) ∈ ℝ)
2620, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ)
276, 12ipge0 23802 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → 0 ≤ (𝐵 , 𝐵))
283, 11, 27syl2anc 586 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐵 , 𝐵))
2920ltp1d 11570 . . . . . . . . 9 (𝜑 → (𝐵 , 𝐵) < ((𝐵 , 𝐵) + 1))
3024, 20, 26, 28, 29lelttrd 10798 . . . . . . . 8 (𝜑 → 0 < ((𝐵 , 𝐵) + 1))
3126ltp1d 11570 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 1) < (((𝐵 , 𝐵) + 1) + 1))
3220recnd 10669 . . . . . . . . . . 11 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
33 ax-1cn 10595 . . . . . . . . . . . 12 1 ∈ ℂ
34 addass 10624 . . . . . . . . . . . 12 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3533, 33, 34mp3an23 1449 . . . . . . . . . . 11 ((𝐵 , 𝐵) ∈ ℂ → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
3632, 35syl 17 . . . . . . . . . 10 (𝜑 → (((𝐵 , 𝐵) + 1) + 1) = ((𝐵 , 𝐵) + (1 + 1)))
37 df-2 11701 . . . . . . . . . . 11 2 = (1 + 1)
3837oveq2i 7167 . . . . . . . . . 10 ((𝐵 , 𝐵) + 2) = ((𝐵 , 𝐵) + (1 + 1))
3936, 38syl6reqr 2875 . . . . . . . . 9 (𝜑 → ((𝐵 , 𝐵) + 2) = (((𝐵 , 𝐵) + 1) + 1))
4031, 39breqtrrd 5094 . . . . . . . 8 (𝜑 → ((𝐵 , 𝐵) + 1) < ((𝐵 , 𝐵) + 2))
4124, 26, 23, 30, 40lttrd 10801 . . . . . . 7 (𝜑 → 0 < ((𝐵 , 𝐵) + 2))
4223, 41elrpd 12429 . . . . . 6 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℝ+)
43 oveq2 7164 . . . . . . . . . . . . . 14 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝐴 𝑥) = (𝐴 (𝑇( ·𝑠𝑊)𝐵)))
4443fveq2d 6674 . . . . . . . . . . . . 13 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
4544breq2d 5078 . . . . . . . . . . . 12 (𝑥 = (𝑇( ·𝑠𝑊)𝐵) → ((𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)) ↔ (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
46 pjthlem.7 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑈 (𝑁𝐴) ≤ (𝑁‘(𝐴 𝑥)))
47 cphlmod 23778 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
483, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LMod)
49 pjthlem.8 . . . . . . . . . . . . . 14 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))
50 hlphl 23968 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
511, 50syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ PreHil)
52 eqid 2821 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑊) = (Scalar‘𝑊)
53 eqid 2821 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5452, 12, 6, 53ipcl 20777 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5551, 4, 11, 54syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
5652, 53hlress 23971 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ℂHil → ℝ ⊆ (Base‘(Scalar‘𝑊)))
571, 56syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ⊆ (Base‘(Scalar‘𝑊)))
5857, 26sseldd 3968 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)))
5920, 28ge0p1rpd 12462 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℝ+)
6059rpne0d 12437 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 , 𝐵) + 1) ≠ 0)
6152, 53cphdivcl 23786 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ ((𝐴 , 𝐵) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐵 , 𝐵) + 1) ≠ 0)) → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
623, 55, 58, 60, 61syl13anc 1368 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ (Base‘(Scalar‘𝑊)))
6349, 62eqeltrid 2917 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (Base‘(Scalar‘𝑊)))
64 eqid 2821 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6552, 64, 53, 7lssvscl 19727 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑈)) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6648, 5, 63, 10, 65syl22anc 836 . . . . . . . . . . . 12 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑈)
6745, 46, 66rspcdva 3625 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
68 cphngp 23777 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
693, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ NrmGrp)
70 pjthlem.n . . . . . . . . . . . . . 14 𝑁 = (norm‘𝑊)
716, 70nmcl 23225 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
7269, 4, 71syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝑁𝐴) ∈ ℝ)
736, 52, 64, 53lmodvscl 19651 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉) → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
7448, 63, 11, 73syl3anc 1367 . . . . . . . . . . . . . 14 (𝜑 → (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)
75 pjthlem.m . . . . . . . . . . . . . . 15 = (-g𝑊)
766, 75lmodvsubcl 19679 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
7748, 4, 74, 76syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)
786, 70nmcl 23225 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
7969, 77, 78syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℝ)
806, 70nmge0 23226 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
8169, 4, 80syl2anc 586 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁𝐴))
826, 70nmge0 23226 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmGrp ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8369, 77, 82syl2anc 586 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))))
8472, 79, 81, 83le2sqd 13621 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴) ≤ (𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵))) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8567, 84mpbid 234 . . . . . . . . . 10 (𝜑 → ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2))
8679resqcld 13612 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) ∈ ℝ)
8772resqcld 13612 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) ∈ ℝ)
8886, 87subge0d 11230 . . . . . . . . . 10 (𝜑 → (0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) ↔ ((𝑁𝐴)↑2) ≤ ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2)))
8985, 88mpbird 259 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
90 2z 12015 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
91 rpexpcl 13449 . . . . . . . . . . . . . . . 16 ((((𝐵 , 𝐵) + 1) ∈ ℝ+ ∧ 2 ∈ ℤ) → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9259, 90, 91sylancl 588 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℝ+)
9317, 92rerpdivcld 12463 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℝ)
9493, 23remulcld 10671 . . . . . . . . . . . . 13 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℝ)
9594recnd 10669 . . . . . . . . . . . 12 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
9695negcld 10984 . . . . . . . . . . 11 (𝜑 → -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) ∈ ℂ)
976, 12cphipcl 23795 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
983, 4, 4, 97syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
9996, 98pncand 10998 . . . . . . . . . 10 (𝜑 → ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
1006, 12, 70nmsq 23798 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉) → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
1013, 77, 100syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))
10212, 6, 75cphsubdir 23812 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝐴 (𝑇( ·𝑠𝑊)𝐵)) ∈ 𝑉)) → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1033, 4, 74, 77, 102syl13anc 1368 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 (𝑇( ·𝑠𝑊)𝐵)) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
10412, 6, 75cphsubdi 23813 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
1053, 4, 4, 74, 104syl13anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))))
106105oveq1d 7171 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))))
1076, 12cphipcl 23795 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1083, 4, 74, 107syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
10912, 6, 75cphsubdi 23813 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ ℂPreHil ∧ ((𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1103, 74, 4, 74, 109syl13anc 1368 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))))
1116, 12cphipcl 23795 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1123, 74, 4, 111syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) ∈ ℂ)
1136, 12cphipcl 23795 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ ℂPreHil ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
1143, 74, 74, 113syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℂ)
115112, 114subcld 10997 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
116110, 115eqeltrd 2913 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) ∈ ℂ)
11798, 108, 116subsub4d 11028 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 , 𝐴) − (𝐴 , (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))))
11893recnd 10669 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) ∈ ℂ)
11926recnd 10669 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 , 𝐵) + 1) ∈ ℂ)
120 1cnd 10636 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
121118, 119, 120adddid 10665 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
12239oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) + 1)))
12312, 6, 52, 53, 64cphassr 23816 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉𝐵𝑉)) → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
1243, 63, 4, 11, 123syl13anc 1368 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((∗‘𝑇) · (𝐴 , 𝐵)))
12514, 119, 60divcld 11416 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ∈ ℂ)
12649, 125eqeltrid 2917 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
127126cjcld 14555 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘𝑇) ∈ ℂ)
128127, 14mulcomd 10662 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((∗‘𝑇) · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) · (∗‘𝑇)))
12914cjcld 14555 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘(𝐴 , 𝐵)) ∈ ℂ)
13014, 129, 119, 60divassd 11451 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
13114absvalsqd 14802 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = ((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))))
132131oveq1d 7171 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = (((𝐴 , 𝐵) · (∗‘(𝐴 , 𝐵))) / ((𝐵 , 𝐵) + 1)))
13349fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘𝑇) = (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
13414, 119, 60cjdivd 14582 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))))
13526cjred 14585 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∗‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
136135oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((∗‘(𝐴 , 𝐵)) / (∗‘((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
137134, 136eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∗‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
138133, 137syl5eq 2868 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘𝑇) = ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
139138oveq2d 7172 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = ((𝐴 , 𝐵) · ((∗‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))))
140130, 132, 1393eqtr4rd 2867 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 , 𝐵) · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
141124, 128, 1403eqtrd 2860 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
14217recnd 10669 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ)
143142, 119mulcomd 10662 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) = (((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)))
144119sqvald 13508 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) = (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1)))
145143, 144oveq12d 7174 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))))
146142, 119, 119, 60, 60divcan5d 11442 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐵 , 𝐵) + 1) · ((abs‘(𝐴 , 𝐵))↑2)) / (((𝐵 , 𝐵) + 1) · ((𝐵 , 𝐵) + 1))) = (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)))
147145, 146eqtr2d 2857 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) / ((𝐵 , 𝐵) + 1)) = ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)))
14892rpcnd 12434 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ∈ ℂ)
14992rpne0d 12437 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐵 , 𝐵) + 1)↑2) ≠ 0)
150142, 119, 148, 149div23d 11453 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 1)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
151141, 147, 1503eqtrd 2860 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15293, 26remulcld 10671 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) ∈ ℝ)
153151, 152eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 , (𝑇( ·𝑠𝑊)𝐵)) ∈ ℝ)
154153cjred 14585 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = (𝐴 , (𝑇( ·𝑠𝑊)𝐵)))
15512, 6cphipcj 23803 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝑇( ·𝑠𝑊)𝐵) ∈ 𝑉) → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
1563, 4, 74, 155syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘(𝐴 , (𝑇( ·𝑠𝑊)𝐵))) = ((𝑇( ·𝑠𝑊)𝐵) , 𝐴))
157154, 156, 1513eqtr3d 2864 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , 𝐴) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)))
15812, 6, 52, 53, 64cph2ass 23817 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ ℂPreHil ∧ (𝑇 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑇 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐵𝑉𝐵𝑉)) → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
1593, 63, 63, 11, 11, 158syl122anc 1375 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)))
16049fveq2i 6673 . . . . . . . . . . . . . . . . . . . . . . . 24 (abs‘𝑇) = (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)))
16114, 119, 60absdivd 14815 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))))
16259rpge0d 12436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ ((𝐵 , 𝐵) + 1))
16326, 162absidd 14782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘((𝐵 , 𝐵) + 1)) = ((𝐵 , 𝐵) + 1))
164163oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘(𝐴 , 𝐵)) / (abs‘((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
165161, 164eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1))) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
166160, 165syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (abs‘𝑇) = ((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1)))
167166oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2))
168126absvalsqd 14802 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (𝑇 · (∗‘𝑇)))
16916, 119, 60sqdivd 13524 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((abs‘(𝐴 , 𝐵)) / ((𝐵 , 𝐵) + 1))↑2) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
170167, 168, 1693eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑇 · (∗‘𝑇)) = (((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)))
171170oveq1d 7171 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · (∗‘𝑇)) · (𝐵 , 𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
172159, 171eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵)))
173157, 172oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑇( ·𝑠𝑊)𝐵) , 𝐴) − ((𝑇( ·𝑠𝑊)𝐵) , (𝑇( ·𝑠𝑊)𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
174 pncan2 10893 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 , 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
17532, 33, 174sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵)) = 1)
176175oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
177118, 119, 32subdid 11096 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (((𝐵 , 𝐵) + 1) − (𝐵 , 𝐵))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
178176, 177eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · (𝐵 , 𝐵))))
179173, 110, 1783eqtr4d 2866 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1))
180151, 179oveq12d 7174 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = (((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 1)) + ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · 1)))
181121, 122, 1803eqtr4rd 2867 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
182181oveq2d 7172 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 , 𝐴) − ((𝐴 , (𝑇( ·𝑠𝑊)𝐵)) + ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵))))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
183106, 117, 1823eqtrd 2860 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 , (𝐴 (𝑇( ·𝑠𝑊)𝐵))) − ((𝑇( ·𝑠𝑊)𝐵) , (𝐴 (𝑇( ·𝑠𝑊)𝐵)))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
184101, 103, 1833eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18598, 95negsubd 11003 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = ((𝐴 , 𝐴) − ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))))
18698, 96addcomd 10842 . . . . . . . . . . . 12 (𝜑 → ((𝐴 , 𝐴) + -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2))) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
187184, 185, 1863eqtr2d 2862 . . . . . . . . . . 11 (𝜑 → ((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) = (-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)))
1886, 12, 70nmsq 23798 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
1893, 4, 188syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
190187, 189oveq12d 7174 . . . . . . . . . 10 (𝜑 → (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)) = ((-((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)) + (𝐴 , 𝐴)) − (𝐴 , 𝐴)))
19123renegcld 11067 . . . . . . . . . . . . 13 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℝ)
192191recnd 10669 . . . . . . . . . . . 12 (𝜑 → -((𝐵 , 𝐵) + 2) ∈ ℂ)
193142, 192, 148, 149div23d 11453 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)))
19423recnd 10669 . . . . . . . . . . . 12 (𝜑 → ((𝐵 , 𝐵) + 2) ∈ ℂ)
195118, 194mulneg2d 11094 . . . . . . . . . . 11 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · -((𝐵 , 𝐵) + 2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
196193, 195eqtrd 2856 . . . . . . . . . 10 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = -((((abs‘(𝐴 , 𝐵))↑2) / (((𝐵 , 𝐵) + 1)↑2)) · ((𝐵 , 𝐵) + 2)))
19799, 190, 1963eqtr4rd 2867 . . . . . . . . 9 (𝜑 → ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)) = (((𝑁‘(𝐴 (𝑇( ·𝑠𝑊)𝐵)))↑2) − ((𝑁𝐴)↑2)))
19889, 197breqtrrd 5094 . . . . . . . 8 (𝜑 → 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2)))
19917, 191remulcld 10671 . . . . . . . . 9 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ∈ ℝ)
200199, 92ge0divd 12470 . . . . . . . 8 (𝜑 → (0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) ↔ 0 ≤ ((((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)) / (((𝐵 , 𝐵) + 1)↑2))))
201198, 200mpbird 259 . . . . . . 7 (𝜑 → 0 ≤ (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
202 mulneg12 11078 . . . . . . . 8 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℂ ∧ ((𝐵 , 𝐵) + 2) ∈ ℂ) → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
203142, 194, 202syl2anc 586 . . . . . . 7 (𝜑 → (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)) = (((abs‘(𝐴 , 𝐵))↑2) · -((𝐵 , 𝐵) + 2)))
204201, 203breqtrrd 5094 . . . . . 6 (𝜑 → 0 ≤ (-((abs‘(𝐴 , 𝐵))↑2) · ((𝐵 , 𝐵) + 2)))
20518, 42, 204prodge0ld 12498 . . . . 5 (𝜑 → 0 ≤ -((abs‘(𝐴 , 𝐵))↑2))
20617le0neg1d 11211 . . . . 5 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ↔ 0 ≤ -((abs‘(𝐴 , 𝐵))↑2)))
207205, 206mpbird 259 . . . 4 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) ≤ 0)
20815sqge0d 13613 . . . 4 (𝜑 → 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))
209 0re 10643 . . . . 5 0 ∈ ℝ
210 letri3 10726 . . . . 5 ((((abs‘(𝐴 , 𝐵))↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
21117, 209, 210sylancl 588 . . . 4 (𝜑 → (((abs‘(𝐴 , 𝐵))↑2) = 0 ↔ (((abs‘(𝐴 , 𝐵))↑2) ≤ 0 ∧ 0 ≤ ((abs‘(𝐴 , 𝐵))↑2))))
212207, 208, 211mpbir2and 711 . . 3 (𝜑 → ((abs‘(𝐴 , 𝐵))↑2) = 0)
21316, 212sqeq0d 13510 . 2 (𝜑 → (abs‘(𝐴 , 𝐵)) = 0)
21414, 213abs00d 14806 1 (𝜑 → (𝐴 , 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  cz 11982  +crp 12390  cexp 13430  ccj 14455  abscabs 14593  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  ·𝑖cip 16570  -gcsg 18105  LModclmod 19634  LSubSpclss 19703  PreHilcphl 20768  normcnm 23186  NrmGrpcngp 23187  ℂPreHilccph 23770  ℂHilchl 23937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-phl 20770  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-flim 22547  df-fcls 22549  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nlm 23196  df-cncf 23486  df-clm 23667  df-cph 23772  df-cfil 23858  df-cmet 23860  df-cms 23938  df-bn 23939  df-hl 23940
This theorem is referenced by:  pjthlem2  24041
  Copyright terms: Public domain W3C validator