![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlphl | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcph 25212 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
2 | cphphl 25019 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 PreHilcphl 21487 ℂPreHilccph 25014 ℂHilchl 25182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fv 6551 df-ov 7415 df-cph 25016 df-hl 25185 |
This theorem is referenced by: chlcsschl 25226 pjthlem1 25285 pjth 25287 pjth2 25288 cldcss 25289 hlhil 25291 |
Copyright terms: Public domain | W3C validator |