MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   GIF version

Theorem hlphl 24434
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 24433 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
2 cphphl 24240 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
31, 2syl 17 1 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  PreHilcphl 20741  ℂPreHilccph 24235  ℂHilchl 24403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258  df-cph 24237  df-hl 24406
This theorem is referenced by:  chlcsschl  24447  pjthlem1  24506  pjth  24508  pjth2  24509  cldcss  24510  hlhil  24512
  Copyright terms: Public domain W3C validator