MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   GIF version

Theorem hlphl 25293
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 25292 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
2 cphphl 25099 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
31, 2syl 17 1 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  PreHilcphl 21563  ℂPreHilccph 25094  ℂHilchl 25262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fv 6494  df-ov 7355  df-cph 25096  df-hl 25265
This theorem is referenced by:  chlcsschl  25306  pjthlem1  25365  pjth  25367  pjth2  25368  cldcss  25369  hlhil  25371
  Copyright terms: Public domain W3C validator