| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlphl | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcph 25264 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
| 2 | cphphl 25071 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 PreHilcphl 21533 ℂPreHilccph 25066 ℂHilchl 25234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ov 7390 df-cph 25068 df-hl 25237 |
| This theorem is referenced by: chlcsschl 25278 pjthlem1 25337 pjth 25339 pjth2 25340 cldcss 25341 hlhil 25343 |
| Copyright terms: Public domain | W3C validator |