MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   GIF version

Theorem hlphl 25317
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 25316 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
2 cphphl 25123 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
31, 2syl 17 1 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  PreHilcphl 21584  ℂPreHilccph 25118  ℂHilchl 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539  df-ov 7408  df-cph 25120  df-hl 25289
This theorem is referenced by:  chlcsschl  25330  pjthlem1  25389  pjth  25391  pjth2  25392  cldcss  25393  hlhil  25395
  Copyright terms: Public domain W3C validator