![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlphl | β’ (π β βHil β π β PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcph 24872 | . 2 β’ (π β βHil β π β βPreHil) | |
2 | cphphl 24679 | . 2 β’ (π β βPreHil β π β PreHil) | |
3 | 1, 2 | syl 17 | 1 β’ (π β βHil β π β PreHil) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 PreHilcphl 21168 βPreHilccph 24674 βHilchl 24842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fv 6548 df-ov 7408 df-cph 24676 df-hl 24845 |
This theorem is referenced by: chlcsschl 24886 pjthlem1 24945 pjth 24947 pjth2 24948 cldcss 24949 hlhil 24951 |
Copyright terms: Public domain | W3C validator |