| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlphl | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcph 25289 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
| 2 | cphphl 25096 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 PreHilcphl 21559 ℂPreHilccph 25091 ℂHilchl 25259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-cph 25093 df-hl 25262 |
| This theorem is referenced by: chlcsschl 25303 pjthlem1 25362 pjth 25364 pjth2 25365 cldcss 25366 hlhil 25368 |
| Copyright terms: Public domain | W3C validator |