MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   GIF version

Theorem hlphl 24873
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ PreHil)

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 24872 . 2 (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ β„‚PreHil)
2 cphphl 24679 . 2 (π‘Š ∈ β„‚PreHil β†’ π‘Š ∈ PreHil)
31, 2syl 17 1 (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  PreHilcphl 21168  β„‚PreHilccph 24674  β„‚Hilchl 24842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fv 6548  df-ov 7408  df-cph 24676  df-hl 24845
This theorem is referenced by:  chlcsschl  24886  pjthlem1  24945  pjth  24947  pjth2  24948  cldcss  24949  hlhil  24951
  Copyright terms: Public domain W3C validator