| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlphl | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcph 25280 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
| 2 | cphphl 25087 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 PreHilcphl 21549 ℂPreHilccph 25082 ℂHilchl 25250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 df-ov 7356 df-cph 25084 df-hl 25253 |
| This theorem is referenced by: chlcsschl 25294 pjthlem1 25353 pjth 25355 pjth2 25356 cldcss 25357 hlhil 25359 |
| Copyright terms: Public domain | W3C validator |