MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem2 Structured version   Visualization version   GIF version

Theorem pjthlem2 23428
Description: Lemma for pjth 23429. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.j 𝐽 = (TopOpen‘𝑊)
pjthlem.s = (LSSum‘𝑊)
pjthlem.o 𝑂 = (ocv‘𝑊)
pjthlem.3 (𝜑𝑈 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
pjthlem2 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))

Proof of Theorem pjthlem2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjthlem.v . . . 4 𝑉 = (Base‘𝑊)
2 pjthlem.m . . . 4 = (-g𝑊)
3 pjthlem.n . . . 4 𝑁 = (norm‘𝑊)
4 pjthlem.1 . . . . 5 (𝜑𝑊 ∈ ℂHil)
5 hlcph 23379 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
64, 5syl 17 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
8 pjthlem.l . . . . 5 𝐿 = (LSubSp‘𝑊)
97, 8syl6eleq 2860 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
10 pjthlem.3 . . . . 5 (𝜑𝑈 ∈ (Clsd‘𝐽))
11 hlcms 23381 . . . . . . 7 (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ CMetSp)
131, 8lssss 19147 . . . . . . 7 (𝑈𝐿𝑈𝑉)
147, 13syl 17 . . . . . 6 (𝜑𝑈𝑉)
15 eqid 2771 . . . . . . 7 (𝑊s 𝑈) = (𝑊s 𝑈)
16 pjthlem.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
1715, 1, 16cmsss 23366 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑈𝑉) → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1812, 14, 17syl2anc 573 . . . . 5 (𝜑 → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1910, 18mpbird 247 . . . 4 (𝜑 → (𝑊s 𝑈) ∈ CMetSp)
20 pjthlem.4 . . . 4 (𝜑𝐴𝑉)
211, 2, 3, 6, 9, 19, 20minvec 23426 . . 3 (𝜑 → ∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
22 reurex 3309 . . 3 (∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
2321, 22syl 17 . 2 (𝜑 → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
246adantr 466 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ ℂPreHil)
25 cphlmod 23193 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ LMod)
27 lmodabl 19120 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2826, 27syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Abel)
297adantr 466 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝐿)
3029, 13syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝑉)
31 simprl 754 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑈)
3230, 31sseldd 3753 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑉)
3320adantr 466 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴𝑉)
34 pjthlem.p . . . . 5 + = (+g𝑊)
351, 34, 2ablpncan3 18429 . . . 4 ((𝑊 ∈ Abel ∧ (𝑥𝑉𝐴𝑉)) → (𝑥 + (𝐴 𝑥)) = 𝐴)
3628, 32, 33, 35syl12anc 1474 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
378lsssssubg 19171 . . . . . 6 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
3826, 37syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐿 ⊆ (SubGrp‘𝑊))
3938, 29sseldd 3753 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈 ∈ (SubGrp‘𝑊))
40 cphphl 23190 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
4124, 40syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ PreHil)
42 pjthlem.o . . . . . . 7 𝑂 = (ocv‘𝑊)
431, 42, 8ocvlss 20233 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
4441, 30, 43syl2anc 573 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ 𝐿)
4538, 44sseldd 3753 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ (SubGrp‘𝑊))
461, 2lmodvsubcl 19118 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝑥𝑉) → (𝐴 𝑥) ∈ 𝑉)
4726, 33, 32, 46syl3anc 1476 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ 𝑉)
48 pjthlem.h . . . . . . . 8 , = (·𝑖𝑊)
494ad2antrr 705 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂHil)
5029adantr 466 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑈𝐿)
5147adantr 466 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → (𝐴 𝑥) ∈ 𝑉)
52 simpr 471 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑧𝑈)
53 oveq2 6804 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 + 𝑥) → (𝐴 𝑦) = (𝐴 (𝑤 + 𝑥)))
5453fveq2d 6337 . . . . . . . . . . . . 13 (𝑦 = (𝑤 + 𝑥) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
5554breq2d 4799 . . . . . . . . . . . 12 (𝑦 = (𝑤 + 𝑥) → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥)))))
56 simplrr 763 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
5726adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ LMod)
5829adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑈𝐿)
59 simpr 471 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑈)
6031adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑈)
6134, 8lssvacl 19167 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑤𝑈𝑥𝑈)) → (𝑤 + 𝑥) ∈ 𝑈)
6257, 58, 59, 60, 61syl22anc 1477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑤 + 𝑥) ∈ 𝑈)
6355, 56, 62rspcdva 3466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥))))
64 lmodgrp 19080 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
6526, 64syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Grp)
6665adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ Grp)
6733adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝐴𝑉)
6832adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑉)
6930sselda 3752 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑉)
701, 34, 2grpsubsub4 17716 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐴𝑉𝑥𝑉𝑤𝑉)) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7166, 67, 68, 69, 70syl13anc 1478 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7271fveq2d 6337 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘((𝐴 𝑥) 𝑤)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
7363, 72breqtrrd 4815 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7473ralrimiva 3115 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7574adantr 466 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
76 eqid 2771 . . . . . . . 8 (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1)) = (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1))
771, 3, 34, 2, 48, 8, 49, 50, 51, 52, 75, 76pjthlem1 23427 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = 0)
7824adantr 466 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂPreHil)
79 cphclm 23208 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
8078, 79syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂMod)
81 eqid 2771 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
8281clm0 23091 . . . . . . . 8 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
8380, 82syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 0 = (0g‘(Scalar‘𝑊)))
8477, 83eqtrd 2805 . . . . . 6 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
8584ralrimiva 3115 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
86 eqid 2771 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
871, 48, 81, 86, 42elocv 20229 . . . . 5 ((𝐴 𝑥) ∈ (𝑂𝑈) ↔ (𝑈𝑉 ∧ (𝐴 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊))))
8830, 47, 85, 87syl3anbrc 1428 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ (𝑂𝑈))
89 pjthlem.s . . . . 5 = (LSSum‘𝑊)
9034, 89lsmelvali 18272 . . . 4 (((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑂𝑈) ∈ (SubGrp‘𝑊)) ∧ (𝑥𝑈 ∧ (𝐴 𝑥) ∈ (𝑂𝑈))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9139, 45, 31, 88, 90syl22anc 1477 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9236, 91eqeltrrd 2851 . 2 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴 ∈ (𝑈 (𝑂𝑈)))
9323, 92rexlimddv 3183 1 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  ∃!wreu 3063  wss 3723   class class class wbr 4787  cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143   + caddc 10145  cle 10281   / cdiv 10890  Basecbs 16064  s cress 16065  +gcplusg 16149  Scalarcsca 16152  ·𝑖cip 16154  TopOpenctopn 16290  0gc0g 16308  Grpcgrp 17630  -gcsg 17632  SubGrpcsubg 17796  LSSumclsm 18256  Abelcabl 18401  LModclmod 19073  LSubSpclss 19142  PreHilcphl 20186  ocvcocv 20221  Clsdccld 21041  normcnm 22601  ℂModcclm 23081  ℂPreHilccph 23185  CMetSpccms 23348  ℂHilchl 23350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lss 19143  df-lmhm 19235  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-phl 20188  df-ocv 20224  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-flim 21963  df-fcls 21965  df-xms 22345  df-ms 22346  df-tms 22347  df-nm 22607  df-ngp 22608  df-nlm 22611  df-cncf 22901  df-clm 23082  df-cph 23187  df-cfil 23272  df-cmet 23274  df-cms 23351  df-bn 23352  df-hl 23353
This theorem is referenced by:  pjth  23429
  Copyright terms: Public domain W3C validator