MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem2 Structured version   Visualization version   GIF version

Theorem pjthlem2 25345
Description: Lemma for pjth 25346. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.j 𝐽 = (TopOpen‘𝑊)
pjthlem.s = (LSSum‘𝑊)
pjthlem.o 𝑂 = (ocv‘𝑊)
pjthlem.3 (𝜑𝑈 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
pjthlem2 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))

Proof of Theorem pjthlem2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjthlem.v . . . 4 𝑉 = (Base‘𝑊)
2 pjthlem.m . . . 4 = (-g𝑊)
3 pjthlem.n . . . 4 𝑁 = (norm‘𝑊)
4 pjthlem.1 . . . . 5 (𝜑𝑊 ∈ ℂHil)
5 hlcph 25271 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
64, 5syl 17 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
8 pjthlem.l . . . . 5 𝐿 = (LSubSp‘𝑊)
97, 8eleqtrdi 2839 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
10 pjthlem.3 . . . . 5 (𝜑𝑈 ∈ (Clsd‘𝐽))
11 hlcms 25273 . . . . . . 7 (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ CMetSp)
131, 8lssss 20849 . . . . . . 7 (𝑈𝐿𝑈𝑉)
147, 13syl 17 . . . . . 6 (𝜑𝑈𝑉)
15 eqid 2730 . . . . . . 7 (𝑊s 𝑈) = (𝑊s 𝑈)
16 pjthlem.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
1715, 1, 16cmsss 25258 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑈𝑉) → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1812, 14, 17syl2anc 584 . . . . 5 (𝜑 → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1910, 18mpbird 257 . . . 4 (𝜑 → (𝑊s 𝑈) ∈ CMetSp)
20 pjthlem.4 . . . 4 (𝜑𝐴𝑉)
211, 2, 3, 6, 9, 19, 20minvec 25343 . . 3 (𝜑 → ∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
22 reurex 3360 . . 3 (∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
2321, 22syl 17 . 2 (𝜑 → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
246adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ ℂPreHil)
25 cphlmod 25081 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ LMod)
27 lmodabl 20822 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2826, 27syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Abel)
297adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝐿)
3029, 13syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝑉)
31 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑈)
3230, 31sseldd 3950 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑉)
3320adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴𝑉)
34 pjthlem.p . . . . 5 + = (+g𝑊)
351, 34, 2ablpncan3 19753 . . . 4 ((𝑊 ∈ Abel ∧ (𝑥𝑉𝐴𝑉)) → (𝑥 + (𝐴 𝑥)) = 𝐴)
3628, 32, 33, 35syl12anc 836 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
378lsssssubg 20871 . . . . . 6 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
3826, 37syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐿 ⊆ (SubGrp‘𝑊))
3938, 29sseldd 3950 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈 ∈ (SubGrp‘𝑊))
40 cphphl 25078 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
4124, 40syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ PreHil)
42 pjthlem.o . . . . . . 7 𝑂 = (ocv‘𝑊)
431, 42, 8ocvlss 21588 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
4441, 30, 43syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ 𝐿)
4538, 44sseldd 3950 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ (SubGrp‘𝑊))
461, 2lmodvsubcl 20820 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝑥𝑉) → (𝐴 𝑥) ∈ 𝑉)
4726, 33, 32, 46syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ 𝑉)
48 pjthlem.h . . . . . . . 8 , = (·𝑖𝑊)
494ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂHil)
5029adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑈𝐿)
5147adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → (𝐴 𝑥) ∈ 𝑉)
52 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑧𝑈)
53 oveq2 7398 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 + 𝑥) → (𝐴 𝑦) = (𝐴 (𝑤 + 𝑥)))
5453fveq2d 6865 . . . . . . . . . . . . 13 (𝑦 = (𝑤 + 𝑥) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
5554breq2d 5122 . . . . . . . . . . . 12 (𝑦 = (𝑤 + 𝑥) → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥)))))
56 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
5726adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ LMod)
5829adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑈𝐿)
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑈)
6031adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑈)
6134, 8lssvacl 20856 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑤𝑈𝑥𝑈)) → (𝑤 + 𝑥) ∈ 𝑈)
6257, 58, 59, 60, 61syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑤 + 𝑥) ∈ 𝑈)
6355, 56, 62rspcdva 3592 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥))))
64 lmodgrp 20780 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
6526, 64syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Grp)
6665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ Grp)
6733adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝐴𝑉)
6832adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑉)
6930sselda 3949 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑉)
701, 34, 2grpsubsub4 18972 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐴𝑉𝑥𝑉𝑤𝑉)) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7166, 67, 68, 69, 70syl13anc 1374 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7271fveq2d 6865 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘((𝐴 𝑥) 𝑤)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
7363, 72breqtrrd 5138 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7473ralrimiva 3126 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7574adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
76 eqid 2730 . . . . . . . 8 (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1)) = (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1))
771, 3, 34, 2, 48, 8, 49, 50, 51, 52, 75, 76pjthlem1 25344 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = 0)
7824adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂPreHil)
79 cphclm 25096 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
8078, 79syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂMod)
81 eqid 2730 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
8281clm0 24979 . . . . . . . 8 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
8380, 82syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 0 = (0g‘(Scalar‘𝑊)))
8477, 83eqtrd 2765 . . . . . 6 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
8584ralrimiva 3126 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
86 eqid 2730 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
871, 48, 81, 86, 42elocv 21584 . . . . 5 ((𝐴 𝑥) ∈ (𝑂𝑈) ↔ (𝑈𝑉 ∧ (𝐴 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊))))
8830, 47, 85, 87syl3anbrc 1344 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ (𝑂𝑈))
89 pjthlem.s . . . . 5 = (LSSum‘𝑊)
9034, 89lsmelvali 19587 . . . 4 (((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑂𝑈) ∈ (SubGrp‘𝑊)) ∧ (𝑥𝑈 ∧ (𝐴 𝑥) ∈ (𝑂𝑈))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9139, 45, 31, 88, 90syl22anc 838 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9236, 91eqeltrrd 2830 . 2 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴 ∈ (𝑈 (𝑂𝑈)))
9323, 92rexlimddv 3141 1 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cle 11216   / cdiv 11842  Basecbs 17186  s cress 17207  +gcplusg 17227  Scalarcsca 17230  ·𝑖cip 17232  TopOpenctopn 17391  0gc0g 17409  Grpcgrp 18872  -gcsg 18874  SubGrpcsubg 19059  LSSumclsm 19571  Abelcabl 19718  LModclmod 20773  LSubSpclss 20844  PreHilcphl 21540  ocvcocv 21576  Clsdccld 22910  normcnm 24471  ℂModcclm 24969  ℂPreHilccph 25073  CMetSpccms 25239  ℂHilchl 25241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-phl 21542  df-ocv 21579  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-flim 23833  df-fcls 23835  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nlm 24481  df-cncf 24778  df-clm 24970  df-cph 25075  df-cfil 25162  df-cmet 25164  df-cms 25242  df-bn 25243  df-hl 25244
This theorem is referenced by:  pjth  25346
  Copyright terms: Public domain W3C validator