MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem2 Structured version   Visualization version   GIF version

Theorem pjthlem2 24507
Description: Lemma for pjth 24508. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.j 𝐽 = (TopOpen‘𝑊)
pjthlem.s = (LSSum‘𝑊)
pjthlem.o 𝑂 = (ocv‘𝑊)
pjthlem.3 (𝜑𝑈 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
pjthlem2 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))

Proof of Theorem pjthlem2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjthlem.v . . . 4 𝑉 = (Base‘𝑊)
2 pjthlem.m . . . 4 = (-g𝑊)
3 pjthlem.n . . . 4 𝑁 = (norm‘𝑊)
4 pjthlem.1 . . . . 5 (𝜑𝑊 ∈ ℂHil)
5 hlcph 24433 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
64, 5syl 17 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
8 pjthlem.l . . . . 5 𝐿 = (LSubSp‘𝑊)
97, 8eleqtrdi 2849 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
10 pjthlem.3 . . . . 5 (𝜑𝑈 ∈ (Clsd‘𝐽))
11 hlcms 24435 . . . . . . 7 (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ CMetSp)
131, 8lssss 20113 . . . . . . 7 (𝑈𝐿𝑈𝑉)
147, 13syl 17 . . . . . 6 (𝜑𝑈𝑉)
15 eqid 2738 . . . . . . 7 (𝑊s 𝑈) = (𝑊s 𝑈)
16 pjthlem.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
1715, 1, 16cmsss 24420 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑈𝑉) → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1812, 14, 17syl2anc 583 . . . . 5 (𝜑 → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1910, 18mpbird 256 . . . 4 (𝜑 → (𝑊s 𝑈) ∈ CMetSp)
20 pjthlem.4 . . . 4 (𝜑𝐴𝑉)
211, 2, 3, 6, 9, 19, 20minvec 24505 . . 3 (𝜑 → ∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
22 reurex 3352 . . 3 (∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
2321, 22syl 17 . 2 (𝜑 → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
246adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ ℂPreHil)
25 cphlmod 24243 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ LMod)
27 lmodabl 20085 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2826, 27syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Abel)
297adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝐿)
3029, 13syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝑉)
31 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑈)
3230, 31sseldd 3918 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑉)
3320adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴𝑉)
34 pjthlem.p . . . . 5 + = (+g𝑊)
351, 34, 2ablpncan3 19333 . . . 4 ((𝑊 ∈ Abel ∧ (𝑥𝑉𝐴𝑉)) → (𝑥 + (𝐴 𝑥)) = 𝐴)
3628, 32, 33, 35syl12anc 833 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
378lsssssubg 20135 . . . . . 6 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
3826, 37syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐿 ⊆ (SubGrp‘𝑊))
3938, 29sseldd 3918 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈 ∈ (SubGrp‘𝑊))
40 cphphl 24240 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
4124, 40syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ PreHil)
42 pjthlem.o . . . . . . 7 𝑂 = (ocv‘𝑊)
431, 42, 8ocvlss 20789 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
4441, 30, 43syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ 𝐿)
4538, 44sseldd 3918 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ (SubGrp‘𝑊))
461, 2lmodvsubcl 20083 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝑥𝑉) → (𝐴 𝑥) ∈ 𝑉)
4726, 33, 32, 46syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ 𝑉)
48 pjthlem.h . . . . . . . 8 , = (·𝑖𝑊)
494ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂHil)
5029adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑈𝐿)
5147adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → (𝐴 𝑥) ∈ 𝑉)
52 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑧𝑈)
53 oveq2 7263 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 + 𝑥) → (𝐴 𝑦) = (𝐴 (𝑤 + 𝑥)))
5453fveq2d 6760 . . . . . . . . . . . . 13 (𝑦 = (𝑤 + 𝑥) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
5554breq2d 5082 . . . . . . . . . . . 12 (𝑦 = (𝑤 + 𝑥) → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥)))))
56 simplrr 774 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
5726adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ LMod)
5829adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑈𝐿)
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑈)
6031adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑈)
6134, 8lssvacl 20131 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑤𝑈𝑥𝑈)) → (𝑤 + 𝑥) ∈ 𝑈)
6257, 58, 59, 60, 61syl22anc 835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑤 + 𝑥) ∈ 𝑈)
6355, 56, 62rspcdva 3554 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥))))
64 lmodgrp 20045 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
6526, 64syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Grp)
6665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ Grp)
6733adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝐴𝑉)
6832adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑉)
6930sselda 3917 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑉)
701, 34, 2grpsubsub4 18583 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐴𝑉𝑥𝑉𝑤𝑉)) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7166, 67, 68, 69, 70syl13anc 1370 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7271fveq2d 6760 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘((𝐴 𝑥) 𝑤)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
7363, 72breqtrrd 5098 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7473ralrimiva 3107 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7574adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
76 eqid 2738 . . . . . . . 8 (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1)) = (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1))
771, 3, 34, 2, 48, 8, 49, 50, 51, 52, 75, 76pjthlem1 24506 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = 0)
7824adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂPreHil)
79 cphclm 24258 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
8078, 79syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂMod)
81 eqid 2738 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
8281clm0 24141 . . . . . . . 8 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
8380, 82syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 0 = (0g‘(Scalar‘𝑊)))
8477, 83eqtrd 2778 . . . . . 6 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
8584ralrimiva 3107 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
86 eqid 2738 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
871, 48, 81, 86, 42elocv 20785 . . . . 5 ((𝐴 𝑥) ∈ (𝑂𝑈) ↔ (𝑈𝑉 ∧ (𝐴 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊))))
8830, 47, 85, 87syl3anbrc 1341 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ (𝑂𝑈))
89 pjthlem.s . . . . 5 = (LSSum‘𝑊)
9034, 89lsmelvali 19170 . . . 4 (((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑂𝑈) ∈ (SubGrp‘𝑊)) ∧ (𝑥𝑈 ∧ (𝐴 𝑥) ∈ (𝑂𝑈))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9139, 45, 31, 88, 90syl22anc 835 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9236, 91eqeltrrd 2840 . 2 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴 ∈ (𝑈 (𝑂𝑈)))
9323, 92rexlimddv 3219 1 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941   / cdiv 11562  Basecbs 16840  s cress 16867  +gcplusg 16888  Scalarcsca 16891  ·𝑖cip 16893  TopOpenctopn 17049  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  LSSumclsm 19154  Abelcabl 19302  LModclmod 20038  LSubSpclss 20108  PreHilcphl 20741  ocvcocv 20777  Clsdccld 22075  normcnm 23638  ℂModcclm 24131  ℂPreHilccph 24235  CMetSpccms 24401  ℂHilchl 24403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-phl 20743  df-ocv 20780  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-flim 22998  df-fcls 23000  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nlm 23648  df-cncf 23947  df-clm 24132  df-cph 24237  df-cfil 24324  df-cmet 24326  df-cms 24404  df-bn 24405  df-hl 24406
This theorem is referenced by:  pjth  24508
  Copyright terms: Public domain W3C validator