MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem2 Structured version   Visualization version   GIF version

Theorem pjthlem2 25368
Description: Lemma for pjth 25369. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
pjthlem.v 𝑉 = (Base‘𝑊)
pjthlem.n 𝑁 = (norm‘𝑊)
pjthlem.p + = (+g𝑊)
pjthlem.m = (-g𝑊)
pjthlem.h , = (·𝑖𝑊)
pjthlem.l 𝐿 = (LSubSp‘𝑊)
pjthlem.1 (𝜑𝑊 ∈ ℂHil)
pjthlem.2 (𝜑𝑈𝐿)
pjthlem.4 (𝜑𝐴𝑉)
pjthlem.j 𝐽 = (TopOpen‘𝑊)
pjthlem.s = (LSSum‘𝑊)
pjthlem.o 𝑂 = (ocv‘𝑊)
pjthlem.3 (𝜑𝑈 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
pjthlem2 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))

Proof of Theorem pjthlem2
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjthlem.v . . . 4 𝑉 = (Base‘𝑊)
2 pjthlem.m . . . 4 = (-g𝑊)
3 pjthlem.n . . . 4 𝑁 = (norm‘𝑊)
4 pjthlem.1 . . . . 5 (𝜑𝑊 ∈ ℂHil)
5 hlcph 25294 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
64, 5syl 17 . . . 4 (𝜑𝑊 ∈ ℂPreHil)
7 pjthlem.2 . . . . 5 (𝜑𝑈𝐿)
8 pjthlem.l . . . . 5 𝐿 = (LSubSp‘𝑊)
97, 8eleqtrdi 2843 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
10 pjthlem.3 . . . . 5 (𝜑𝑈 ∈ (Clsd‘𝐽))
11 hlcms 25296 . . . . . . 7 (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ CMetSp)
131, 8lssss 20873 . . . . . . 7 (𝑈𝐿𝑈𝑉)
147, 13syl 17 . . . . . 6 (𝜑𝑈𝑉)
15 eqid 2733 . . . . . . 7 (𝑊s 𝑈) = (𝑊s 𝑈)
16 pjthlem.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
1715, 1, 16cmsss 25281 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑈𝑉) → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1812, 14, 17syl2anc 584 . . . . 5 (𝜑 → ((𝑊s 𝑈) ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
1910, 18mpbird 257 . . . 4 (𝜑 → (𝑊s 𝑈) ∈ CMetSp)
20 pjthlem.4 . . . 4 (𝜑𝐴𝑉)
211, 2, 3, 6, 9, 19, 20minvec 25366 . . 3 (𝜑 → ∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
22 reurex 3351 . . 3 (∃!𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
2321, 22syl 17 . 2 (𝜑 → ∃𝑥𝑈𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
246adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ ℂPreHil)
25 cphlmod 25104 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
2624, 25syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ LMod)
27 lmodabl 20846 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2826, 27syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Abel)
297adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝐿)
3029, 13syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈𝑉)
31 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑈)
3230, 31sseldd 3931 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑥𝑉)
3320adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴𝑉)
34 pjthlem.p . . . . 5 + = (+g𝑊)
351, 34, 2ablpncan3 19732 . . . 4 ((𝑊 ∈ Abel ∧ (𝑥𝑉𝐴𝑉)) → (𝑥 + (𝐴 𝑥)) = 𝐴)
3628, 32, 33, 35syl12anc 836 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) = 𝐴)
378lsssssubg 20895 . . . . . 6 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
3826, 37syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐿 ⊆ (SubGrp‘𝑊))
3938, 29sseldd 3931 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑈 ∈ (SubGrp‘𝑊))
40 cphphl 25101 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
4124, 40syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ PreHil)
42 pjthlem.o . . . . . . 7 𝑂 = (ocv‘𝑊)
431, 42, 8ocvlss 21613 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
4441, 30, 43syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ 𝐿)
4538, 44sseldd 3931 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑂𝑈) ∈ (SubGrp‘𝑊))
461, 2lmodvsubcl 20844 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝑥𝑉) → (𝐴 𝑥) ∈ 𝑉)
4726, 33, 32, 46syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ 𝑉)
48 pjthlem.h . . . . . . . 8 , = (·𝑖𝑊)
494ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂHil)
5029adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑈𝐿)
5147adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → (𝐴 𝑥) ∈ 𝑉)
52 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑧𝑈)
53 oveq2 7362 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 + 𝑥) → (𝐴 𝑦) = (𝐴 (𝑤 + 𝑥)))
5453fveq2d 6834 . . . . . . . . . . . . 13 (𝑦 = (𝑤 + 𝑥) → (𝑁‘(𝐴 𝑦)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
5554breq2d 5107 . . . . . . . . . . . 12 (𝑦 = (𝑤 + 𝑥) → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥)))))
56 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
5726adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ LMod)
5829adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑈𝐿)
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑈)
6031adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑈)
6134, 8lssvacl 20880 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑤𝑈𝑥𝑈)) → (𝑤 + 𝑥) ∈ 𝑈)
6257, 58, 59, 60, 61syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑤 + 𝑥) ∈ 𝑈)
6355, 56, 62rspcdva 3574 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 (𝑤 + 𝑥))))
64 lmodgrp 20804 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
6526, 64syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝑊 ∈ Grp)
6665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑊 ∈ Grp)
6733adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝐴𝑉)
6832adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑥𝑉)
6930sselda 3930 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → 𝑤𝑉)
701, 34, 2grpsubsub4 18950 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐴𝑉𝑥𝑉𝑤𝑉)) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7166, 67, 68, 69, 70syl13anc 1374 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → ((𝐴 𝑥) 𝑤) = (𝐴 (𝑤 + 𝑥)))
7271fveq2d 6834 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘((𝐴 𝑥) 𝑤)) = (𝑁‘(𝐴 (𝑤 + 𝑥))))
7363, 72breqtrrd 5123 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑤𝑈) → (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7473ralrimiva 3125 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
7574adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ∀𝑤𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘((𝐴 𝑥) 𝑤)))
76 eqid 2733 . . . . . . . 8 (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1)) = (((𝐴 𝑥) , 𝑧) / ((𝑧 , 𝑧) + 1))
771, 3, 34, 2, 48, 8, 49, 50, 51, 52, 75, 76pjthlem1 25367 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = 0)
7824adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂPreHil)
79 cphclm 25119 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
8078, 79syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 𝑊 ∈ ℂMod)
81 eqid 2733 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
8281clm0 25002 . . . . . . . 8 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
8380, 82syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → 0 = (0g‘(Scalar‘𝑊)))
8477, 83eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) ∧ 𝑧𝑈) → ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
8584ralrimiva 3125 . . . . 5 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊)))
86 eqid 2733 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
871, 48, 81, 86, 42elocv 21609 . . . . 5 ((𝐴 𝑥) ∈ (𝑂𝑈) ↔ (𝑈𝑉 ∧ (𝐴 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑈 ((𝐴 𝑥) , 𝑧) = (0g‘(Scalar‘𝑊))))
8830, 47, 85, 87syl3anbrc 1344 . . . 4 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝐴 𝑥) ∈ (𝑂𝑈))
89 pjthlem.s . . . . 5 = (LSSum‘𝑊)
9034, 89lsmelvali 19566 . . . 4 (((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑂𝑈) ∈ (SubGrp‘𝑊)) ∧ (𝑥𝑈 ∧ (𝐴 𝑥) ∈ (𝑂𝑈))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9139, 45, 31, 88, 90syl22anc 838 . . 3 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → (𝑥 + (𝐴 𝑥)) ∈ (𝑈 (𝑂𝑈)))
9236, 91eqeltrrd 2834 . 2 ((𝜑 ∧ (𝑥𝑈 ∧ ∀𝑦𝑈 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))) → 𝐴 ∈ (𝑈 (𝑂𝑈)))
9323, 92rexlimddv 3140 1 (𝜑𝐴 ∈ (𝑈 (𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  ∃!wreu 3345  wss 3898   class class class wbr 5095  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  cle 11156   / cdiv 11783  Basecbs 17124  s cress 17145  +gcplusg 17165  Scalarcsca 17168  ·𝑖cip 17170  TopOpenctopn 17329  0gc0g 17347  Grpcgrp 18850  -gcsg 18852  SubGrpcsubg 19037  LSSumclsm 19550  Abelcabl 19697  LModclmod 20797  LSubSpclss 20868  PreHilcphl 21565  ocvcocv 21601  Clsdccld 22934  normcnm 24494  ℂModcclm 24992  ℂPreHilccph 25096  CMetSpccms 25262  ℂHilchl 25264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-subrng 20465  df-subrg 20489  df-drng 20650  df-staf 20758  df-srng 20759  df-lmod 20799  df-lss 20869  df-lmhm 20960  df-lvec 21041  df-sra 21111  df-rgmod 21112  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-phl 21567  df-ocv 21604  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-flim 23857  df-fcls 23859  df-xms 24238  df-ms 24239  df-tms 24240  df-nm 24500  df-ngp 24501  df-nlm 24504  df-cncf 24801  df-clm 24993  df-cph 25098  df-cfil 25185  df-cmet 25187  df-cms 25265  df-bn 25266  df-hl 25267
This theorem is referenced by:  pjth  25369
  Copyright terms: Public domain W3C validator