MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem2 Structured version   Visualization version   GIF version

Theorem wkslem2 27956
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem2 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃𝐶), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃𝐶)} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem2
StepHypRef Expression
1 fveq2 6768 . . . 4 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
21adantr 480 . . 3 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝑃𝐴) = (𝑃𝐵))
3 fveq2 6768 . . . 4 ((𝐴 + 1) = 𝐶 → (𝑃‘(𝐴 + 1)) = (𝑃𝐶))
43adantl 481 . . 3 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝑃‘(𝐴 + 1)) = (𝑃𝐶))
52, 4eqeq12d 2755 . 2 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃𝐶)))
6 2fveq3 6773 . . . 4 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
71sneqd 4578 . . . 4 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
86, 7eqeq12d 2755 . . 3 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
98adantr 480 . 2 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
102, 4preq12d 4682 . . 3 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃𝐶)})
116adantr 480 . . 3 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
1210, 11sseq12d 3958 . 2 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃𝐶)} ⊆ (𝐼‘(𝐹𝐵))))
135, 9, 12ifpbi123d 1076 1 ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃𝐶), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃𝐶)} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  if-wif 1059   = wceq 1541  wss 3891  {csn 4566  {cpr 4568  cfv 6430  (class class class)co 7268  1c1 10856   + caddc 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438
This theorem is referenced by:  wlkl1loop  27985  wlk1walk  27986  crctcshwlkn0lem6  28159  1wlkdlem4  28483
  Copyright terms: Public domain W3C validator