Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wkslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
Ref | Expression |
---|---|
wkslem2 | ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘𝐶), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6658 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑃‘𝐴) = (𝑃‘𝐵)) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝑃‘𝐴) = (𝑃‘𝐵)) |
3 | fveq2 6658 | . . . 4 ⊢ ((𝐴 + 1) = 𝐶 → (𝑃‘(𝐴 + 1)) = (𝑃‘𝐶)) | |
4 | 3 | adantl 485 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝑃‘(𝐴 + 1)) = (𝑃‘𝐶)) |
5 | 2, 4 | eqeq12d 2774 | . 2 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃‘𝐵) = (𝑃‘𝐶))) |
6 | 2fveq3 6663 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐼‘(𝐹‘𝐴)) = (𝐼‘(𝐹‘𝐵))) | |
7 | 1 | sneqd 4534 | . . . 4 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴)} = {(𝑃‘𝐵)}) |
8 | 6, 7 | eqeq12d 2774 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)} ↔ (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)})) |
9 | 8 | adantr 484 | . 2 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ((𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)} ↔ (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)})) |
10 | 2, 4 | preq12d 4634 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃‘𝐵), (𝑃‘𝐶)}) |
11 | 6 | adantr 484 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (𝐼‘(𝐹‘𝐴)) = (𝐼‘(𝐹‘𝐵))) |
12 | 10, 11 | sseq12d 3925 | . 2 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → ({(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴)) ↔ {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵)))) |
13 | 5, 9, 12 | ifpbi123d 1075 | 1 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘𝐶), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 if-wif 1058 = wceq 1538 ⊆ wss 3858 {csn 4522 {cpr 4524 ‘cfv 6335 (class class class)co 7150 1c1 10576 + caddc 10578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 |
This theorem is referenced by: wlkl1loop 27526 wlk1walk 27527 crctcshwlkn0lem6 27700 1wlkdlem4 28024 |
Copyright terms: Public domain | W3C validator |