MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem6 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem6 27000
Description: Lemma for crctcshwlkn0 27006. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem6 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝑄(𝑥,𝑖)   𝐹(𝑥)   𝐻(𝑥,𝑖)   𝐼(𝑥)   𝐽(𝑖)

Proof of Theorem crctcshwlkn0lem6
StepHypRef Expression
1 oveq1 6849 . . . . . . . . 9 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
2 0p1e1 11401 . . . . . . . . 9 (0 + 1) = 1
31, 2syl6eq 2815 . . . . . . . 8 (𝑖 = 0 → (𝑖 + 1) = 1)
4 wkslem2 26795 . . . . . . . 8 ((𝑖 = 0 ∧ (𝑖 + 1) = 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
53, 4mpdan 678 . . . . . . 7 (𝑖 = 0 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
6 crctcshwlkn0lem.p . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
7 crctcshwlkn0lem.s . . . . . . . . 9 (𝜑𝑆 ∈ (1..^𝑁))
8 elfzo1 12726 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
9 simp2 1167 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ)
108, 9sylbi 208 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℕ)
117, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
12 lbfzo0 12716 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
1311, 12sylibr 225 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑁))
145, 6, 13rspcdva 3467 . . . . . 6 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
15 crctcshwlkn0lem.e . . . . . . 7 (𝜑 → (𝑃𝑁) = (𝑃‘0))
16 eqeq1 2769 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝑃𝑁) = (𝑃‘1) ↔ (𝑃‘0) = (𝑃‘1)))
17 sneq 4344 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁)} = {(𝑃‘0)})
1817eqeq2d 2775 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝐼‘(𝐹‘0)) = {(𝑃𝑁)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0)}))
19 preq1 4423 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁), (𝑃‘1)} = {(𝑃‘0), (𝑃‘1)})
2019sseq1d 3792 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ({(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
2116, 18, 20ifpbi123d 1100 . . . . . . 7 ((𝑃𝑁) = (𝑃‘0) → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2215, 21syl 17 . . . . . 6 (𝜑 → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2314, 22mpbird 248 . . . . 5 (𝜑 → if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
24 nncn 11283 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 nncn 11283 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℂ)
26 npcan 10544 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑁𝑆) + 𝑆) = 𝑁)
2724, 25, 26syl2anr 590 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 𝑆) = 𝑁)
28 simpr 477 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → ((𝑁𝑆) + 𝑆) = 𝑁)
29 oveq1 6849 . . . . . . . . . . 11 (((𝑁𝑆) + 𝑆) = 𝑁 → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑁 mod (♯‘𝐹)))
30 crctcshwlkn0lem.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐹)
3130eqcomi 2774 . . . . . . . . . . . . . 14 (♯‘𝐹) = 𝑁
3231a1i 11 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘𝐹) = 𝑁)
3332oveq2d 6858 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (♯‘𝐹)) = (𝑁 mod 𝑁))
34 nnrp 12041 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
35 modid0 12904 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
3736adantl 473 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod 𝑁) = 0)
3833, 37eqtrd 2799 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (♯‘𝐹)) = 0)
3929, 38sylan9eqr 2821 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0)
40 simpl 474 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ))
4128, 39, 403jca 1158 . . . . . . . . 9 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
4227, 41mpdan 678 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
43423adant3 1162 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
448, 43sylbi 208 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
45 simp1 1166 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑁𝑆) + 𝑆) = 𝑁)
4645fveq2d 6379 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃𝑁))
4746eqeq1d 2767 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1) ↔ (𝑃𝑁) = (𝑃‘1)))
48 simp2 1167 . . . . . . . . . 10 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0)
4948fveq2d 6379 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))) = (𝐹‘0))
5049fveq2d 6379 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = (𝐼‘(𝐹‘0)))
5146sneqd 4346 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆))} = {(𝑃𝑁)})
5250, 51eqeq12d 2780 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))} ↔ (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}))
5346preq1d 4429 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} = {(𝑃𝑁), (𝑃‘1)})
5453, 50sseq12d 3794 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ({(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) ↔ {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
5547, 52, 54ifpbi123d 1100 . . . . . 6 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
567, 44, 553syl 18 . . . . 5 (𝜑 → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
5723, 56mpbird 248 . . . 4 (𝜑 → if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))))
58 nnsub 11316 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
5958biimp3a 1593 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
6059nnnn0d 11598 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
618, 60sylbi 208 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℕ0)
627, 61syl 17 . . . . . . 7 (𝜑 → (𝑁𝑆) ∈ ℕ0)
63 nn0fz0 12645 . . . . . . 7 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (0...(𝑁𝑆)))
6462, 63sylib 209 . . . . . 6 (𝜑 → (𝑁𝑆) ∈ (0...(𝑁𝑆)))
65 crctcshwlkn0lem.q . . . . . . 7 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
667, 65crctcshwlkn0lem2 26996 . . . . . 6 ((𝜑 ∧ (𝑁𝑆) ∈ (0...(𝑁𝑆))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
6764, 66mpdan 678 . . . . 5 (𝜑 → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
68 elfzoel2 12677 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
69 elfzoelz 12678 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
7068, 69zsubcld 11734 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
7170peano2zd 11732 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
72 nnre 11282 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7372anim1i 608 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
7473ancoms 450 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
75 crctcshwlkn0lem1 26995 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
77763adant3 1162 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
788, 77sylbi 208 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
7971, 68, 783jca 1158 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
807, 79syl 17 . . . . . . . . 9 (𝜑 → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
81 eluz2 11892 . . . . . . . . 9 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) ↔ (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
8280, 81sylibr 225 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)))
83 eluzfz1 12555 . . . . . . . 8 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
8482, 83syl 17 . . . . . . 7 (𝜑 → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
857, 65crctcshwlkn0lem3 26997 . . . . . . 7 ((𝜑 ∧ ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
8684, 85mpdan 678 . . . . . 6 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
87 subcl 10534 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
8887ancoms 450 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
89 ax-1cn 10247 . . . . . . . . . . . . 13 1 ∈ ℂ
90 pncan2 10542 . . . . . . . . . . . . . 14 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = 1)
9190eqcomd 2771 . . . . . . . . . . . . 13 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
9288, 89, 91sylancl 580 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
93 peano2cn 10462 . . . . . . . . . . . . . 14 ((𝑁𝑆) ∈ ℂ → ((𝑁𝑆) + 1) ∈ ℂ)
9488, 93syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑁𝑆) + 1) ∈ ℂ)
95 simpr 477 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑁 ∈ ℂ)
96 simpl 474 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑆 ∈ ℂ)
9794, 95, 96subsub3d 10676 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = ((((𝑁𝑆) + 1) + 𝑆) − 𝑁))
9892, 97eqtr2d 2800 . . . . . . . . . . 11 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
9925, 24, 98syl2an 589 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
100993adant3 1162 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1018, 100sylbi 208 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1027, 101syl 17 . . . . . . 7 (𝜑 → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
103102fveq2d 6379 . . . . . 6 (𝜑 → (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)) = (𝑃‘1))
10486, 103eqtrd 2799 . . . . 5 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
105 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
106105fveq1i 6376 . . . . . 6 (𝐻‘(𝑁𝑆)) = ((𝐹 cyclShift 𝑆)‘(𝑁𝑆))
107 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
108107adantr 472 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝐴)
10969adantl 473 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝑆 ∈ ℤ)
110 elfzofz 12693 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (1...𝑁))
111 ubmelfzo 12741 . . . . . . . . . . 11 (𝑆 ∈ (1...𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
113112adantl 473 . . . . . . . . 9 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^𝑁))
11431oveq2i 6853 . . . . . . . . 9 (0..^(♯‘𝐹)) = (0..^𝑁)
115113, 114syl6eleqr 2855 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^(♯‘𝐹)))
116 cshwidxmod 13832 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ (𝑁𝑆) ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
117108, 109, 115, 116syl3anc 1490 . . . . . . 7 ((𝜑𝑆 ∈ (1..^𝑁)) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
1187, 117mpdan 678 . . . . . 6 (𝜑 → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
119106, 118syl5eq 2811 . . . . 5 (𝜑 → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
120 simp1 1166 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
121 simp2 1167 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
122120, 121eqeq12d 2780 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)) ↔ (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1)))
123 simp3 1168 . . . . . . . 8 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
124123fveq2d 6379 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝐼‘(𝐻‘(𝑁𝑆))) = (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))
125120sneqd 4346 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → {(𝑄‘(𝑁𝑆))} = {(𝑃‘((𝑁𝑆) + 𝑆))})
126124, 125eqeq12d 2780 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ((𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))} ↔ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}))
127120, 121preq12d 4431 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} = {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)})
128127, 124sseq12d 3794 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ({(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))) ↔ {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))))
129122, 126, 128ifpbi123d 1100 . . . . 5 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))))
13067, 104, 119, 129syl3anc 1490 . . . 4 (𝜑 → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))))
13157, 130mpbird 248 . . 3 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
132131adantr 472 . 2 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
133 wkslem1 26794 . . 3 (𝐽 = (𝑁𝑆) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
134133adantl 473 . 2 ((𝜑𝐽 = (𝑁𝑆)) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
135132, 134mpbird 248 1 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  if-wif 1085  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wss 3732  ifcif 4243  {csn 4334  {cpr 4336   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  +crp 12028  ...cfz 12533  ..^cfzo 12673   mod cmo 12876  chash 13321  Word cword 13486   cyclShift ccsh 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-hash 13322  df-word 13487  df-concat 13542  df-substr 13617  df-pfx 13662  df-csh 13814
This theorem is referenced by:  crctcshwlkn0lem7  27001
  Copyright terms: Public domain W3C validator