MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem6 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem6 27745
Description: Lemma for crctcshwlkn0 27751. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem6 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝑄(𝑥,𝑖)   𝐹(𝑥)   𝐻(𝑥,𝑖)   𝐼(𝑥)   𝐽(𝑖)

Proof of Theorem crctcshwlkn0lem6
StepHypRef Expression
1 oveq1 7171 . . . . . . . . 9 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
2 0p1e1 11831 . . . . . . . . 9 (0 + 1) = 1
31, 2eqtrdi 2789 . . . . . . . 8 (𝑖 = 0 → (𝑖 + 1) = 1)
4 wkslem2 27542 . . . . . . . 8 ((𝑖 = 0 ∧ (𝑖 + 1) = 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
53, 4mpdan 687 . . . . . . 7 (𝑖 = 0 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
6 crctcshwlkn0lem.p . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
7 crctcshwlkn0lem.s . . . . . . . . 9 (𝜑𝑆 ∈ (1..^𝑁))
8 elfzo1 13171 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
9 simp2 1138 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ)
108, 9sylbi 220 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℕ)
117, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
12 lbfzo0 13161 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
1311, 12sylibr 237 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑁))
145, 6, 13rspcdva 3526 . . . . . 6 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
15 crctcshwlkn0lem.e . . . . . . 7 (𝜑 → (𝑃𝑁) = (𝑃‘0))
16 eqeq1 2742 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝑃𝑁) = (𝑃‘1) ↔ (𝑃‘0) = (𝑃‘1)))
17 sneq 4523 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁)} = {(𝑃‘0)})
1817eqeq2d 2749 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝐼‘(𝐹‘0)) = {(𝑃𝑁)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0)}))
19 preq1 4621 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁), (𝑃‘1)} = {(𝑃‘0), (𝑃‘1)})
2019sseq1d 3906 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ({(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
2116, 18, 20ifpbi123d 1079 . . . . . . 7 ((𝑃𝑁) = (𝑃‘0) → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2215, 21syl 17 . . . . . 6 (𝜑 → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2314, 22mpbird 260 . . . . 5 (𝜑 → if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
24 nncn 11717 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 nncn 11717 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℂ)
26 npcan 10966 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑁𝑆) + 𝑆) = 𝑁)
2724, 25, 26syl2anr 600 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 𝑆) = 𝑁)
28 simpr 488 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → ((𝑁𝑆) + 𝑆) = 𝑁)
29 oveq1 7171 . . . . . . . . . . 11 (((𝑁𝑆) + 𝑆) = 𝑁 → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑁 mod (♯‘𝐹)))
30 crctcshwlkn0lem.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐹)
3130eqcomi 2747 . . . . . . . . . . . . . 14 (♯‘𝐹) = 𝑁
3231a1i 11 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘𝐹) = 𝑁)
3332oveq2d 7180 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (♯‘𝐹)) = (𝑁 mod 𝑁))
34 nnrp 12476 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
35 modid0 13349 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
3736adantl 485 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod 𝑁) = 0)
3833, 37eqtrd 2773 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (♯‘𝐹)) = 0)
3929, 38sylan9eqr 2795 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0)
40 simpl 486 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ))
4128, 39, 403jca 1129 . . . . . . . . 9 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
4227, 41mpdan 687 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
43423adant3 1133 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
448, 43sylbi 220 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
45 simp1 1137 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑁𝑆) + 𝑆) = 𝑁)
4645fveq2d 6672 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃𝑁))
4746eqeq1d 2740 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1) ↔ (𝑃𝑁) = (𝑃‘1)))
48 simp2 1138 . . . . . . . . . 10 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0)
4948fveq2d 6672 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))) = (𝐹‘0))
5049fveq2d 6672 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = (𝐼‘(𝐹‘0)))
5146sneqd 4525 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆))} = {(𝑃𝑁)})
5250, 51eqeq12d 2754 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))} ↔ (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}))
5346preq1d 4627 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} = {(𝑃𝑁), (𝑃‘1)})
5453, 50sseq12d 3908 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ({(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) ↔ {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
5547, 52, 54ifpbi123d 1079 . . . . . 6 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (♯‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
567, 44, 553syl 18 . . . . 5 (𝜑 → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
5723, 56mpbird 260 . . . 4 (𝜑 → if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))))
58 nnsub 11753 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
5958biimp3a 1470 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
6059nnnn0d 12029 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
618, 60sylbi 220 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℕ0)
627, 61syl 17 . . . . . . 7 (𝜑 → (𝑁𝑆) ∈ ℕ0)
63 nn0fz0 13089 . . . . . . 7 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (0...(𝑁𝑆)))
6462, 63sylib 221 . . . . . 6 (𝜑 → (𝑁𝑆) ∈ (0...(𝑁𝑆)))
65 crctcshwlkn0lem.q . . . . . . 7 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
667, 65crctcshwlkn0lem2 27741 . . . . . 6 ((𝜑 ∧ (𝑁𝑆) ∈ (0...(𝑁𝑆))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
6764, 66mpdan 687 . . . . 5 (𝜑 → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
68 elfzoel2 13121 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
69 elfzoelz 13122 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
7068, 69zsubcld 12166 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
7170peano2zd 12164 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
72 nnre 11716 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7372anim1i 618 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
7473ancoms 462 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
75 crctcshwlkn0lem1 27740 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
77763adant3 1133 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
788, 77sylbi 220 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
7971, 68, 783jca 1129 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
807, 79syl 17 . . . . . . . . 9 (𝜑 → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
81 eluz2 12323 . . . . . . . . 9 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) ↔ (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
8280, 81sylibr 237 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)))
83 eluzfz1 12998 . . . . . . . 8 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
8482, 83syl 17 . . . . . . 7 (𝜑 → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
857, 65crctcshwlkn0lem3 27742 . . . . . . 7 ((𝜑 ∧ ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
8684, 85mpdan 687 . . . . . 6 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
87 subcl 10956 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
8887ancoms 462 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
89 ax-1cn 10666 . . . . . . . . . . . . 13 1 ∈ ℂ
90 pncan2 10964 . . . . . . . . . . . . . 14 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = 1)
9190eqcomd 2744 . . . . . . . . . . . . 13 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
9288, 89, 91sylancl 589 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
93 peano2cn 10883 . . . . . . . . . . . . . 14 ((𝑁𝑆) ∈ ℂ → ((𝑁𝑆) + 1) ∈ ℂ)
9488, 93syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑁𝑆) + 1) ∈ ℂ)
95 simpr 488 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑁 ∈ ℂ)
96 simpl 486 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑆 ∈ ℂ)
9794, 95, 96subsub3d 11098 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = ((((𝑁𝑆) + 1) + 𝑆) − 𝑁))
9892, 97eqtr2d 2774 . . . . . . . . . . 11 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
9925, 24, 98syl2an 599 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
100993adant3 1133 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1018, 100sylbi 220 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1027, 101syl 17 . . . . . . 7 (𝜑 → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
103102fveq2d 6672 . . . . . 6 (𝜑 → (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)) = (𝑃‘1))
10486, 103eqtrd 2773 . . . . 5 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
105 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
106105fveq1i 6669 . . . . . 6 (𝐻‘(𝑁𝑆)) = ((𝐹 cyclShift 𝑆)‘(𝑁𝑆))
107 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
108107adantr 484 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝐴)
10969adantl 485 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝑆 ∈ ℤ)
110 elfzofz 13137 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (1...𝑁))
111 ubmelfzo 13186 . . . . . . . . . . 11 (𝑆 ∈ (1...𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
113112adantl 485 . . . . . . . . 9 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^𝑁))
11431oveq2i 7175 . . . . . . . . 9 (0..^(♯‘𝐹)) = (0..^𝑁)
115113, 114eleqtrrdi 2844 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^(♯‘𝐹)))
116 cshwidxmod 14247 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ (𝑁𝑆) ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
117108, 109, 115, 116syl3anc 1372 . . . . . . 7 ((𝜑𝑆 ∈ (1..^𝑁)) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
1187, 117mpdan 687 . . . . . 6 (𝜑 → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
119106, 118syl5eq 2785 . . . . 5 (𝜑 → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
120 simp1 1137 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
121 simp2 1138 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
122120, 121eqeq12d 2754 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)) ↔ (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1)))
123 simp3 1139 . . . . . . . 8 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))
124123fveq2d 6672 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (𝐼‘(𝐻‘(𝑁𝑆))) = (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))
125120sneqd 4525 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → {(𝑄‘(𝑁𝑆))} = {(𝑃‘((𝑁𝑆) + 𝑆))})
126124, 125eqeq12d 2754 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ((𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))} ↔ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}))
127120, 121preq12d 4629 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} = {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)})
128127, 124sseq12d 3908 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → ({(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))) ↔ {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹))))))
129122, 126, 128ifpbi123d 1079 . . . . 5 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))))
13067, 104, 119, 129syl3anc 1372 . . . 4 (𝜑 → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (♯‘𝐹)))))))
13157, 130mpbird 260 . . 3 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
132131adantr 484 . 2 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
133 wkslem1 27541 . . 3 (𝐽 = (𝑁𝑆) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
134133adantl 485 . 2 ((𝜑𝐽 = (𝑁𝑆)) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
135132, 134mpbird 260 1 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  if-wif 1062  w3a 1088   = wceq 1542  wcel 2113  wral 3053  wss 3841  ifcif 4411  {csn 4513  {cpr 4515   class class class wbr 5027  cmpt 5107  cfv 6333  (class class class)co 7164  cc 10606  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   < clt 10746  cle 10747  cmin 10941  cn 11709  0cn0 11969  cz 12055  cuz 12317  +crp 12465  ...cfz 12974  ..^cfzo 13117   mod cmo 13321  chash 13775  Word cword 13948   cyclShift ccsh 14232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-hash 13776  df-word 13949  df-concat 14005  df-substr 14085  df-pfx 14115  df-csh 14233
This theorem is referenced by:  crctcshwlkn0lem7  27746
  Copyright terms: Public domain W3C validator