MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkres Structured version   Visualization version   GIF version

Theorem wlkres 29649
Description: The restriction 𝐻, 𝑄 of a walk 𝐹, 𝑃 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 30197. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v 𝑉 = (Vtx‘𝐺)
wlkres.i 𝐼 = (iEdg‘𝐺)
wlkres.d (𝜑𝐹(Walks‘𝐺)𝑃)
wlkres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
wlkres.h 𝐻 = (𝐹 prefix 𝑁)
wlkres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
wlkres (𝜑𝐻(Walks‘𝑆)𝑄)

Proof of Theorem wlkres
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkres.d . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
2 wlkres.i . . . . 5 𝐼 = (iEdg‘𝐺)
32wlkf 29595 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
4 pfxwrdsymb 14599 . . . 4 (𝐹 ∈ Word dom 𝐼 → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁)))
51, 3, 43syl 18 . . 3 (𝜑 → (𝐹 prefix 𝑁) ∈ Word (𝐹 “ (0..^𝑁)))
6 wlkres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
76a1i 11 . . 3 (𝜑𝐻 = (𝐹 prefix 𝑁))
8 wlkres.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
98dmeqd 5849 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
101, 3syl 17 . . . . . . 7 (𝜑𝐹 ∈ Word dom 𝐼)
11 wrdf 14427 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
12 fimass 6676 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼)
14 ssdmres 5966 . . . . . 6 ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
1513, 14sylib 218 . . . . 5 (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁)))
169, 15eqtrd 2768 . . . 4 (𝜑 → dom (iEdg‘𝑆) = (𝐹 “ (0..^𝑁)))
17 wrdeq 14445 . . . 4 (dom (iEdg‘𝑆) = (𝐹 “ (0..^𝑁)) → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁)))
1816, 17syl 17 . . 3 (𝜑 → Word dom (iEdg‘𝑆) = Word (𝐹 “ (0..^𝑁)))
195, 7, 183eltr4d 2848 . 2 (𝜑𝐻 ∈ Word dom (iEdg‘𝑆))
20 wlkres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2120wlkp 29597 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
221, 21syl 17 . . . . . 6 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
23 wlkres.s . . . . . . 7 (𝜑 → (Vtx‘𝑆) = 𝑉)
2423feq3d 6641 . . . . . 6 (𝜑 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉))
2522, 24mpbird 257 . . . . 5 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆))
26 fzossfz 13580 . . . . . . 7 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
27 wlkres.n . . . . . . 7 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
2826, 27sselid 3928 . . . . . 6 (𝜑𝑁 ∈ (0...(♯‘𝐹)))
29 elfzuz3 13423 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
30 fzss2 13466 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(♯‘𝐹)))
3128, 29, 303syl 18 . . . . 5 (𝜑 → (0...𝑁) ⊆ (0...(♯‘𝐹)))
3225, 31fssresd 6695 . . . 4 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))
336fveq2i 6831 . . . . . . 7 (♯‘𝐻) = (♯‘(𝐹 prefix 𝑁))
34 pfxlen 14593 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
3510, 28, 34syl2anc 584 . . . . . . 7 (𝜑 → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
3633, 35eqtrid 2780 . . . . . 6 (𝜑 → (♯‘𝐻) = 𝑁)
3736oveq2d 7368 . . . . 5 (𝜑 → (0...(♯‘𝐻)) = (0...𝑁))
3837feq2d 6640 . . . 4 (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)))
3932, 38mpbird 257 . . 3 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆))
40 wlkres.q . . . 4 𝑄 = (𝑃 ↾ (0...𝑁))
4140feq1i 6647 . . 3 (𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(♯‘𝐻))⟶(Vtx‘𝑆))
4239, 41sylibr 234 . 2 (𝜑𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆))
4320, 2wlkprop 29592 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
441, 43syl 17 . . . . 5 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
4544adantr 480 . . . 4 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
4636oveq2d 7368 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
4746eleq2d 2819 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁)))
4840fveq1i 6829 . . . . . . . . . . . . 13 (𝑄𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥)
49 fzossfz 13580 . . . . . . . . . . . . . . . 16 (0..^𝑁) ⊆ (0...𝑁)
5049a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (0..^𝑁) ⊆ (0...𝑁))
5150sselda 3930 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁))
5251fvresd 6848 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃𝑥))
5348, 52eqtr2id 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃𝑥) = (𝑄𝑥))
5440fveq1i 6829 . . . . . . . . . . . . 13 (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1))
55 fzofzp1 13666 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
5655adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
5756fvresd 6848 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1)))
5854, 57eqtr2id 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))
5953, 58jca 511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
6059ex 412 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
6147, 60sylbid 240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
6261imp 406 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
6310ancli 548 . . . . . . . . . . . . . 14 (𝜑 → (𝜑𝐹 ∈ Word dom 𝐼))
6411ffund 6660 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → Fun 𝐹)
6564adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → Fun 𝐹)
6665adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹)
67 fdm 6665 . . . . . . . . . . . . . . . . . 18 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
68 elfzouz2 13576 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
69 fzoss2 13589 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
7027, 68, 693syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
71 sseq2 3957 . . . . . . . . . . . . . . . . . . 19 (dom 𝐹 = (0..^(♯‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(♯‘𝐹))))
7270, 71imbitrrid 246 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
7311, 67, 723syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
7473impcom 407 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹)
7574adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹)
76 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
7766, 75, 76resfvresima 7175 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
7863, 77sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
7978eqcomd 2739 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
8079ex 412 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
8147, 80sylbid 240 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(♯‘𝐻)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
8281imp 406 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
838adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
846fveq1i 6829 . . . . . . . . . . 11 (𝐻𝑥) = ((𝐹 prefix 𝑁)‘𝑥)
8510adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝐹 ∈ Word dom 𝐼)
8628adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝑁 ∈ (0...(♯‘𝐹)))
87 pfxres 14589 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
8885, 86, 87syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
8988fveq1d 6830 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((𝐹 prefix 𝑁)‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
9084, 89eqtrid 2780 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
9183, 90fveq12d 6835 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → ((iEdg‘𝑆)‘(𝐻𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
9282, 91eqtr4d 2771 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
9362, 92jca 511 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))))
9427, 68syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐹) ∈ (ℤ𝑁))
9536fveq2d 6832 . . . . . . . . . . 11 (𝜑 → (ℤ‘(♯‘𝐻)) = (ℤ𝑁))
9694, 95eleqtrrd 2836 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) ∈ (ℤ‘(♯‘𝐻)))
97 fzoss2 13589 . . . . . . . . . 10 ((♯‘𝐹) ∈ (ℤ‘(♯‘𝐻)) → (0..^(♯‘𝐻)) ⊆ (0..^(♯‘𝐹)))
9896, 97syl 17 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐻)) ⊆ (0..^(♯‘𝐹)))
9998sselda 3930 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → 𝑥 ∈ (0..^(♯‘𝐹)))
100 wkslem1 29588 . . . . . . . . 9 (𝑘 = 𝑥 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
101100rspcv 3569 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
10299, 101syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
103 eqeq12 2750 . . . . . . . . . 10 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
104103adantr 480 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
105 simpr 484 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
106 sneq 4585 . . . . . . . . . . . 12 ((𝑃𝑥) = (𝑄𝑥) → {(𝑃𝑥)} = {(𝑄𝑥)})
107106adantr 480 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥)} = {(𝑄𝑥)})
108107adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥)} = {(𝑄𝑥)})
109105, 108eqeq12d 2749 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}))
110 preq12 4687 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
111110adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
112111, 105sseq12d 3964 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)) ↔ {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
113104, 109, 112ifpbi123d 1078 . . . . . . . 8 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) ↔ if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
114113biimpd 229 . . . . . . 7 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
11593, 102, 114sylsyld 61 . . . . . 6 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
116115com12 32 . . . . 5 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
1171163ad2ant3 1135 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
11845, 117mpcom 38 . . 3 ((𝜑𝑥 ∈ (0..^(♯‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
119118ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
12020, 2, 1, 27, 23wlkreslem 29648 . . 3 (𝜑𝑆 ∈ V)
121 eqid 2733 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
122 eqid 2733 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
123121, 122iswlkg 29594 . . 3 (𝑆 ∈ V → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
124120, 123syl 17 . 2 (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(♯‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
12519, 42, 119, 124mpbir3and 1343 1 (𝜑𝐻(Walks‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  {csn 4575  {cpr 4577   class class class wbr 5093  dom cdm 5619  cres 5621  cima 5622  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   prefix cpfx 14580  Vtxcvtx 28976  iEdgciedg 28977  Walkscwlks 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551  df-pfx 14581  df-wlks 29580
This theorem is referenced by:  trlres  29679  eupthres  30197
  Copyright terms: Public domain W3C validator