MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkres Structured version   Visualization version   GIF version

Theorem wlkres 28916
Description: The restriction ⟨𝐻, π‘„βŸ© of a walk ⟨𝐹, π‘ƒβŸ© to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 29457. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v 𝑉 = (Vtxβ€˜πΊ)
wlkres.i 𝐼 = (iEdgβ€˜πΊ)
wlkres.d (πœ‘ β†’ 𝐹(Walksβ€˜πΊ)𝑃)
wlkres.n (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
wlkres.s (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)
wlkres.e (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
wlkres.h 𝐻 = (𝐹 prefix 𝑁)
wlkres.q 𝑄 = (𝑃 β†Ύ (0...𝑁))
Assertion
Ref Expression
wlkres (πœ‘ β†’ 𝐻(Walksβ€˜π‘†)𝑄)

Proof of Theorem wlkres
Dummy variables π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkres.d . . . 4 (πœ‘ β†’ 𝐹(Walksβ€˜πΊ)𝑃)
2 wlkres.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
32wlkf 28860 . . . 4 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝐹 ∈ Word dom 𝐼)
4 pfxwrdsymb 14635 . . . 4 (𝐹 ∈ Word dom 𝐼 β†’ (𝐹 prefix 𝑁) ∈ Word (𝐹 β€œ (0..^𝑁)))
51, 3, 43syl 18 . . 3 (πœ‘ β†’ (𝐹 prefix 𝑁) ∈ Word (𝐹 β€œ (0..^𝑁)))
6 wlkres.h . . . 4 𝐻 = (𝐹 prefix 𝑁)
76a1i 11 . . 3 (πœ‘ β†’ 𝐻 = (𝐹 prefix 𝑁))
8 wlkres.e . . . . . 6 (πœ‘ β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
98dmeqd 5903 . . . . 5 (πœ‘ β†’ dom (iEdgβ€˜π‘†) = dom (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
101, 3syl 17 . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ Word dom 𝐼)
11 wrdf 14465 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 β†’ 𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐼)
12 fimass 6735 . . . . . . 7 (𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐼 β†’ (𝐹 β€œ (0..^𝑁)) βŠ† dom 𝐼)
1310, 11, 123syl 18 . . . . . 6 (πœ‘ β†’ (𝐹 β€œ (0..^𝑁)) βŠ† dom 𝐼)
14 ssdmres 6002 . . . . . 6 ((𝐹 β€œ (0..^𝑁)) βŠ† dom 𝐼 ↔ dom (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))) = (𝐹 β€œ (0..^𝑁)))
1513, 14sylib 217 . . . . 5 (πœ‘ β†’ dom (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))) = (𝐹 β€œ (0..^𝑁)))
169, 15eqtrd 2772 . . . 4 (πœ‘ β†’ dom (iEdgβ€˜π‘†) = (𝐹 β€œ (0..^𝑁)))
17 wrdeq 14482 . . . 4 (dom (iEdgβ€˜π‘†) = (𝐹 β€œ (0..^𝑁)) β†’ Word dom (iEdgβ€˜π‘†) = Word (𝐹 β€œ (0..^𝑁)))
1816, 17syl 17 . . 3 (πœ‘ β†’ Word dom (iEdgβ€˜π‘†) = Word (𝐹 β€œ (0..^𝑁)))
195, 7, 183eltr4d 2848 . 2 (πœ‘ β†’ 𝐻 ∈ Word dom (iEdgβ€˜π‘†))
20 wlkres.v . . . . . . . 8 𝑉 = (Vtxβ€˜πΊ)
2120wlkp 28862 . . . . . . 7 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
221, 21syl 17 . . . . . 6 (πœ‘ β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
23 wlkres.s . . . . . . 7 (πœ‘ β†’ (Vtxβ€˜π‘†) = 𝑉)
2423feq3d 6701 . . . . . 6 (πœ‘ β†’ (𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜π‘†) ↔ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰))
2522, 24mpbird 256 . . . . 5 (πœ‘ β†’ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜π‘†))
26 fzossfz 13647 . . . . . . 7 (0..^(β™―β€˜πΉ)) βŠ† (0...(β™―β€˜πΉ))
27 wlkres.n . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
2826, 27sselid 3979 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ (0...(β™―β€˜πΉ)))
29 elfzuz3 13494 . . . . . 6 (𝑁 ∈ (0...(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘))
30 fzss2 13537 . . . . . 6 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘) β†’ (0...𝑁) βŠ† (0...(β™―β€˜πΉ)))
3128, 29, 303syl 18 . . . . 5 (πœ‘ β†’ (0...𝑁) βŠ† (0...(β™―β€˜πΉ)))
3225, 31fssresd 6755 . . . 4 (πœ‘ β†’ (𝑃 β†Ύ (0...𝑁)):(0...𝑁)⟢(Vtxβ€˜π‘†))
336fveq2i 6891 . . . . . . 7 (β™―β€˜π») = (β™―β€˜(𝐹 prefix 𝑁))
34 pfxlen 14629 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(β™―β€˜πΉ))) β†’ (β™―β€˜(𝐹 prefix 𝑁)) = 𝑁)
3510, 28, 34syl2anc 584 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(𝐹 prefix 𝑁)) = 𝑁)
3633, 35eqtrid 2784 . . . . . 6 (πœ‘ β†’ (β™―β€˜π») = 𝑁)
3736oveq2d 7421 . . . . 5 (πœ‘ β†’ (0...(β™―β€˜π»)) = (0...𝑁))
3837feq2d 6700 . . . 4 (πœ‘ β†’ ((𝑃 β†Ύ (0...𝑁)):(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†) ↔ (𝑃 β†Ύ (0...𝑁)):(0...𝑁)⟢(Vtxβ€˜π‘†)))
3932, 38mpbird 256 . . 3 (πœ‘ β†’ (𝑃 β†Ύ (0...𝑁)):(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†))
40 wlkres.q . . . 4 𝑄 = (𝑃 β†Ύ (0...𝑁))
4140feq1i 6705 . . 3 (𝑄:(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†) ↔ (𝑃 β†Ύ (0...𝑁)):(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†))
4239, 41sylibr 233 . 2 (πœ‘ β†’ 𝑄:(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†))
4320, 2wlkprop 28857 . . . . . 6 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))))
441, 43syl 17 . . . . 5 (πœ‘ β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))))
4544adantr 481 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))))
4636oveq2d 7421 . . . . . . . . . . 11 (πœ‘ β†’ (0..^(β™―β€˜π»)) = (0..^𝑁))
4746eleq2d 2819 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ (0..^(β™―β€˜π»)) ↔ π‘₯ ∈ (0..^𝑁)))
4840fveq1i 6889 . . . . . . . . . . . . 13 (π‘„β€˜π‘₯) = ((𝑃 β†Ύ (0...𝑁))β€˜π‘₯)
49 fzossfz 13647 . . . . . . . . . . . . . . . 16 (0..^𝑁) βŠ† (0...𝑁)
5049a1i 11 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (0..^𝑁) βŠ† (0...𝑁))
5150sselda 3981 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ π‘₯ ∈ (0...𝑁))
5251fvresd 6908 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ ((𝑃 β†Ύ (0...𝑁))β€˜π‘₯) = (π‘ƒβ€˜π‘₯))
5348, 52eqtr2id 2785 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ (π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯))
5440fveq1i 6889 . . . . . . . . . . . . 13 (π‘„β€˜(π‘₯ + 1)) = ((𝑃 β†Ύ (0...𝑁))β€˜(π‘₯ + 1))
55 fzofzp1 13725 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (0..^𝑁) β†’ (π‘₯ + 1) ∈ (0...𝑁))
5655adantl 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ (π‘₯ + 1) ∈ (0...𝑁))
5756fvresd 6908 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ ((𝑃 β†Ύ (0...𝑁))β€˜(π‘₯ + 1)) = (π‘ƒβ€˜(π‘₯ + 1)))
5854, 57eqtr2id 2785 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1)))
5953, 58jca 512 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ ((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))))
6059ex 413 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ (0..^𝑁) β†’ ((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1)))))
6147, 60sylbid 239 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ (0..^(β™―β€˜π»)) β†’ ((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1)))))
6261imp 407 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ ((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))))
6310ancli 549 . . . . . . . . . . . . . 14 (πœ‘ β†’ (πœ‘ ∧ 𝐹 ∈ Word dom 𝐼))
6411ffund 6718 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 β†’ Fun 𝐹)
6564adantl 482 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) β†’ Fun 𝐹)
6665adantr 481 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) ∧ π‘₯ ∈ (0..^𝑁)) β†’ Fun 𝐹)
67 fdm 6723 . . . . . . . . . . . . . . . . . 18 (𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐼 β†’ dom 𝐹 = (0..^(β™―β€˜πΉ)))
68 elfzouz2 13643 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (0..^(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘))
69 fzoss2 13656 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘) β†’ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ)))
7027, 68, 693syl 18 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ)))
71 sseq2 4007 . . . . . . . . . . . . . . . . . . 19 (dom 𝐹 = (0..^(β™―β€˜πΉ)) β†’ ((0..^𝑁) βŠ† dom 𝐹 ↔ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ))))
7270, 71imbitrrid 245 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 = (0..^(β™―β€˜πΉ)) β†’ (πœ‘ β†’ (0..^𝑁) βŠ† dom 𝐹))
7311, 67, 723syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 β†’ (πœ‘ β†’ (0..^𝑁) βŠ† dom 𝐹))
7473impcom 408 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) β†’ (0..^𝑁) βŠ† dom 𝐹)
7574adantr 481 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) ∧ π‘₯ ∈ (0..^𝑁)) β†’ (0..^𝑁) βŠ† dom 𝐹)
76 simpr 485 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) ∧ π‘₯ ∈ (0..^𝑁)) β†’ π‘₯ ∈ (0..^𝑁))
7766, 75, 76resfvresima 7233 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐹 ∈ Word dom 𝐼) ∧ π‘₯ ∈ (0..^𝑁)) β†’ ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯)) = (πΌβ€˜(πΉβ€˜π‘₯)))
7863, 77sylan 580 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯)) = (πΌβ€˜(πΉβ€˜π‘₯)))
7978eqcomd 2738 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (0..^𝑁)) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯)))
8079ex 413 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ (0..^𝑁) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯))))
8147, 80sylbid 239 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ (0..^(β™―β€˜π»)) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯))))
8281imp 407 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯)))
838adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (iEdgβ€˜π‘†) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
846fveq1i 6889 . . . . . . . . . . 11 (π»β€˜π‘₯) = ((𝐹 prefix 𝑁)β€˜π‘₯)
8510adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ 𝐹 ∈ Word dom 𝐼)
8628adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ 𝑁 ∈ (0...(β™―β€˜πΉ)))
87 pfxres 14625 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(β™―β€˜πΉ))) β†’ (𝐹 prefix 𝑁) = (𝐹 β†Ύ (0..^𝑁)))
8885, 86, 87syl2anc 584 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (𝐹 prefix 𝑁) = (𝐹 β†Ύ (0..^𝑁)))
8988fveq1d 6890 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ ((𝐹 prefix 𝑁)β€˜π‘₯) = ((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯))
9084, 89eqtrid 2784 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (π»β€˜π‘₯) = ((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯))
9183, 90fveq12d 6895 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁)))β€˜((𝐹 β†Ύ (0..^𝑁))β€˜π‘₯)))
9282, 91eqtr4d 2775 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))
9362, 92jca 512 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))
9427, 68syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘))
9536fveq2d 6892 . . . . . . . . . . 11 (πœ‘ β†’ (β„€β‰₯β€˜(β™―β€˜π»)) = (β„€β‰₯β€˜π‘))
9694, 95eleqtrrd 2836 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜(β™―β€˜π»)))
97 fzoss2 13656 . . . . . . . . . 10 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜(β™―β€˜π»)) β†’ (0..^(β™―β€˜π»)) βŠ† (0..^(β™―β€˜πΉ)))
9896, 97syl 17 . . . . . . . . 9 (πœ‘ β†’ (0..^(β™―β€˜π»)) βŠ† (0..^(β™―β€˜πΉ)))
9998sselda 3981 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ π‘₯ ∈ (0..^(β™―β€˜πΉ)))
100 wkslem1 28853 . . . . . . . . 9 (π‘˜ = π‘₯ β†’ (if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) ↔ if-((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)), (πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)}, {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯)))))
101100rspcv 3608 . . . . . . . 8 (π‘₯ ∈ (0..^(β™―β€˜πΉ)) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) β†’ if-((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)), (πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)}, {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯)))))
10299, 101syl 17 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) β†’ if-((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)), (πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)}, {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯)))))
103 eqeq12 2749 . . . . . . . . . 10 (((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) β†’ ((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)) ↔ (π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1))))
104103adantr 481 . . . . . . . . 9 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ ((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)) ↔ (π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1))))
105 simpr 485 . . . . . . . . . 10 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))
106 sneq 4637 . . . . . . . . . . . 12 ((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) β†’ {(π‘ƒβ€˜π‘₯)} = {(π‘„β€˜π‘₯)})
107106adantr 481 . . . . . . . . . . 11 (((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) β†’ {(π‘ƒβ€˜π‘₯)} = {(π‘„β€˜π‘₯)})
108107adantr 481 . . . . . . . . . 10 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ {(π‘ƒβ€˜π‘₯)} = {(π‘„β€˜π‘₯)})
109105, 108eqeq12d 2748 . . . . . . . . 9 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ ((πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)} ↔ ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}))
110 preq12 4738 . . . . . . . . . . 11 (((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) β†’ {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} = {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))})
111110adantr 481 . . . . . . . . . 10 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} = {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))})
112111, 105sseq12d 4014 . . . . . . . . 9 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ ({(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯)) ↔ {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))
113104, 109, 112ifpbi123d 1078 . . . . . . . 8 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ (if-((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)), (πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)}, {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯))) ↔ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))))
114113biimpd 228 . . . . . . 7 ((((π‘ƒβ€˜π‘₯) = (π‘„β€˜π‘₯) ∧ (π‘ƒβ€˜(π‘₯ + 1)) = (π‘„β€˜(π‘₯ + 1))) ∧ (πΌβ€˜(πΉβ€˜π‘₯)) = ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))) β†’ (if-((π‘ƒβ€˜π‘₯) = (π‘ƒβ€˜(π‘₯ + 1)), (πΌβ€˜(πΉβ€˜π‘₯)) = {(π‘ƒβ€˜π‘₯)}, {(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘₯))) β†’ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))))
11593, 102, 114sylsyld 61 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) β†’ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))))
116115com12 32 . . . . 5 (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) β†’ ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))))
1171163ad2ant3 1135 . . . 4 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜)))) β†’ ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)))))
11845, 117mpcom 38 . . 3 ((πœ‘ ∧ π‘₯ ∈ (0..^(β™―β€˜π»))) β†’ if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))
119118ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ (0..^(β™―β€˜π»))if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))
12020, 2, 1, 27, 23wlkreslem 28915 . . 3 (πœ‘ β†’ 𝑆 ∈ V)
121 eqid 2732 . . . 4 (Vtxβ€˜π‘†) = (Vtxβ€˜π‘†)
122 eqid 2732 . . . 4 (iEdgβ€˜π‘†) = (iEdgβ€˜π‘†)
123121, 122iswlkg 28859 . . 3 (𝑆 ∈ V β†’ (𝐻(Walksβ€˜π‘†)𝑄 ↔ (𝐻 ∈ Word dom (iEdgβ€˜π‘†) ∧ 𝑄:(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜π»))if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))))
124120, 123syl 17 . 2 (πœ‘ β†’ (𝐻(Walksβ€˜π‘†)𝑄 ↔ (𝐻 ∈ Word dom (iEdgβ€˜π‘†) ∧ 𝑄:(0...(β™―β€˜π»))⟢(Vtxβ€˜π‘†) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜π»))if-((π‘„β€˜π‘₯) = (π‘„β€˜(π‘₯ + 1)), ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯)) = {(π‘„β€˜π‘₯)}, {(π‘„β€˜π‘₯), (π‘„β€˜(π‘₯ + 1))} βŠ† ((iEdgβ€˜π‘†)β€˜(π»β€˜π‘₯))))))
12519, 42, 119, 124mpbir3and 1342 1 (πœ‘ β†’ 𝐻(Walksβ€˜π‘†)𝑄)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  if-wif 1061   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947  {csn 4627  {cpr 4629   class class class wbr 5147  dom cdm 5675   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460   prefix cpfx 14616  Vtxcvtx 28245  iEdgciedg 28246  Walkscwlks 28842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587  df-pfx 14617  df-wlks 28845
This theorem is referenced by:  trlres  28946  eupthres  29457
  Copyright terms: Public domain W3C validator