Step | Hyp | Ref
| Expression |
1 | | wlkres.d |
. . . 4
β’ (π β πΉ(WalksβπΊ)π) |
2 | | wlkres.i |
. . . . 5
β’ πΌ = (iEdgβπΊ) |
3 | 2 | wlkf 28860 |
. . . 4
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
4 | | pfxwrdsymb 14635 |
. . . 4
β’ (πΉ β Word dom πΌ β (πΉ prefix π) β Word (πΉ β (0..^π))) |
5 | 1, 3, 4 | 3syl 18 |
. . 3
β’ (π β (πΉ prefix π) β Word (πΉ β (0..^π))) |
6 | | wlkres.h |
. . . 4
β’ π» = (πΉ prefix π) |
7 | 6 | a1i 11 |
. . 3
β’ (π β π» = (πΉ prefix π)) |
8 | | wlkres.e |
. . . . . 6
β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
9 | 8 | dmeqd 5903 |
. . . . 5
β’ (π β dom (iEdgβπ) = dom (πΌ βΎ (πΉ β (0..^π)))) |
10 | 1, 3 | syl 17 |
. . . . . . 7
β’ (π β πΉ β Word dom πΌ) |
11 | | wrdf 14465 |
. . . . . . 7
β’ (πΉ β Word dom πΌ β πΉ:(0..^(β―βπΉ))βΆdom πΌ) |
12 | | fimass 6735 |
. . . . . . 7
β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β (πΉ β (0..^π)) β dom πΌ) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . 6
β’ (π β (πΉ β (0..^π)) β dom πΌ) |
14 | | ssdmres 6002 |
. . . . . 6
β’ ((πΉ β (0..^π)) β dom πΌ β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) |
15 | 13, 14 | sylib 217 |
. . . . 5
β’ (π β dom (πΌ βΎ (πΉ β (0..^π))) = (πΉ β (0..^π))) |
16 | 9, 15 | eqtrd 2772 |
. . . 4
β’ (π β dom (iEdgβπ) = (πΉ β (0..^π))) |
17 | | wrdeq 14482 |
. . . 4
β’ (dom
(iEdgβπ) = (πΉ β (0..^π)) β Word dom (iEdgβπ) = Word (πΉ β (0..^π))) |
18 | 16, 17 | syl 17 |
. . 3
β’ (π β Word dom (iEdgβπ) = Word (πΉ β (0..^π))) |
19 | 5, 7, 18 | 3eltr4d 2848 |
. 2
β’ (π β π» β Word dom (iEdgβπ)) |
20 | | wlkres.v |
. . . . . . . 8
β’ π = (VtxβπΊ) |
21 | 20 | wlkp 28862 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆπ) |
22 | 1, 21 | syl 17 |
. . . . . 6
β’ (π β π:(0...(β―βπΉ))βΆπ) |
23 | | wlkres.s |
. . . . . . 7
β’ (π β (Vtxβπ) = π) |
24 | 23 | feq3d 6701 |
. . . . . 6
β’ (π β (π:(0...(β―βπΉ))βΆ(Vtxβπ) β π:(0...(β―βπΉ))βΆπ)) |
25 | 22, 24 | mpbird 256 |
. . . . 5
β’ (π β π:(0...(β―βπΉ))βΆ(Vtxβπ)) |
26 | | fzossfz 13647 |
. . . . . . 7
β’
(0..^(β―βπΉ)) β (0...(β―βπΉ)) |
27 | | wlkres.n |
. . . . . . 7
β’ (π β π β (0..^(β―βπΉ))) |
28 | 26, 27 | sselid 3979 |
. . . . . 6
β’ (π β π β (0...(β―βπΉ))) |
29 | | elfzuz3 13494 |
. . . . . 6
β’ (π β
(0...(β―βπΉ))
β (β―βπΉ)
β (β€β₯βπ)) |
30 | | fzss2 13537 |
. . . . . 6
β’
((β―βπΉ)
β (β€β₯βπ) β (0...π) β (0...(β―βπΉ))) |
31 | 28, 29, 30 | 3syl 18 |
. . . . 5
β’ (π β (0...π) β (0...(β―βπΉ))) |
32 | 25, 31 | fssresd 6755 |
. . . 4
β’ (π β (π βΎ (0...π)):(0...π)βΆ(Vtxβπ)) |
33 | 6 | fveq2i 6891 |
. . . . . . 7
β’
(β―βπ») =
(β―β(πΉ prefix
π)) |
34 | | pfxlen 14629 |
. . . . . . . 8
β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (β―β(πΉ prefix π)) = π) |
35 | 10, 28, 34 | syl2anc 584 |
. . . . . . 7
β’ (π β (β―β(πΉ prefix π)) = π) |
36 | 33, 35 | eqtrid 2784 |
. . . . . 6
β’ (π β (β―βπ») = π) |
37 | 36 | oveq2d 7421 |
. . . . 5
β’ (π β (0...(β―βπ»)) = (0...π)) |
38 | 37 | feq2d 6700 |
. . . 4
β’ (π β ((π βΎ (0...π)):(0...(β―βπ»))βΆ(Vtxβπ) β (π βΎ (0...π)):(0...π)βΆ(Vtxβπ))) |
39 | 32, 38 | mpbird 256 |
. . 3
β’ (π β (π βΎ (0...π)):(0...(β―βπ»))βΆ(Vtxβπ)) |
40 | | wlkres.q |
. . . 4
β’ π = (π βΎ (0...π)) |
41 | 40 | feq1i 6705 |
. . 3
β’ (π:(0...(β―βπ»))βΆ(Vtxβπ) β (π βΎ (0...π)):(0...(β―βπ»))βΆ(Vtxβπ)) |
42 | 39, 41 | sylibr 233 |
. 2
β’ (π β π:(0...(β―βπ»))βΆ(Vtxβπ)) |
43 | 20, 2 | wlkprop 28857 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
44 | 1, 43 | syl 17 |
. . . . 5
β’ (π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
45 | 44 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))) |
46 | 36 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (π β (0..^(β―βπ»)) = (0..^π)) |
47 | 46 | eleq2d 2819 |
. . . . . . . . . 10
β’ (π β (π₯ β (0..^(β―βπ»)) β π₯ β (0..^π))) |
48 | 40 | fveq1i 6889 |
. . . . . . . . . . . . 13
β’ (πβπ₯) = ((π βΎ (0...π))βπ₯) |
49 | | fzossfz 13647 |
. . . . . . . . . . . . . . . 16
β’
(0..^π) β
(0...π) |
50 | 49 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^π) β (0...π)) |
51 | 50 | sselda 3981 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0..^π)) β π₯ β (0...π)) |
52 | 51 | fvresd 6908 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0..^π)) β ((π βΎ (0...π))βπ₯) = (πβπ₯)) |
53 | 48, 52 | eqtr2id 2785 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0..^π)) β (πβπ₯) = (πβπ₯)) |
54 | 40 | fveq1i 6889 |
. . . . . . . . . . . . 13
β’ (πβ(π₯ + 1)) = ((π βΎ (0...π))β(π₯ + 1)) |
55 | | fzofzp1 13725 |
. . . . . . . . . . . . . . 15
β’ (π₯ β (0..^π) β (π₯ + 1) β (0...π)) |
56 | 55 | adantl 482 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0..^π)) β (π₯ + 1) β (0...π)) |
57 | 56 | fvresd 6908 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0..^π)) β ((π βΎ (0...π))β(π₯ + 1)) = (πβ(π₯ + 1))) |
58 | 54, 57 | eqtr2id 2785 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0..^π)) β (πβ(π₯ + 1)) = (πβ(π₯ + 1))) |
59 | 53, 58 | jca 512 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (0..^π)) β ((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1)))) |
60 | 59 | ex 413 |
. . . . . . . . . 10
β’ (π β (π₯ β (0..^π) β ((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))))) |
61 | 47, 60 | sylbid 239 |
. . . . . . . . 9
β’ (π β (π₯ β (0..^(β―βπ»)) β ((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))))) |
62 | 61 | imp 407 |
. . . . . . . 8
β’ ((π β§ π₯ β (0..^(β―βπ»))) β ((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1)))) |
63 | 10 | ancli 549 |
. . . . . . . . . . . . . 14
β’ (π β (π β§ πΉ β Word dom πΌ)) |
64 | 11 | ffund 6718 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β Word dom πΌ β Fun πΉ) |
65 | 64 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ πΉ β Word dom πΌ) β Fun πΉ) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ β Word dom πΌ) β§ π₯ β (0..^π)) β Fun πΉ) |
67 | | fdm 6723 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β dom πΉ = (0..^(β―βπΉ))) |
68 | | elfzouz2 13643 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β
(0..^(β―βπΉ))
β (β―βπΉ)
β (β€β₯βπ)) |
69 | | fzoss2 13656 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπΉ)
β (β€β₯βπ) β (0..^π) β (0..^(β―βπΉ))) |
70 | 27, 68, 69 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (0..^π) β (0..^(β―βπΉ))) |
71 | | sseq2 4007 |
. . . . . . . . . . . . . . . . . . 19
β’ (dom
πΉ =
(0..^(β―βπΉ))
β ((0..^π) β dom
πΉ β (0..^π) β
(0..^(β―βπΉ)))) |
72 | 70, 71 | imbitrrid 245 |
. . . . . . . . . . . . . . . . . 18
β’ (dom
πΉ =
(0..^(β―βπΉ))
β (π β (0..^π) β dom πΉ)) |
73 | 11, 67, 72 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β Word dom πΌ β (π β (0..^π) β dom πΉ)) |
74 | 73 | impcom 408 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ πΉ β Word dom πΌ) β (0..^π) β dom πΉ) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ β Word dom πΌ) β§ π₯ β (0..^π)) β (0..^π) β dom πΉ) |
76 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π β§ πΉ β Word dom πΌ) β§ π₯ β (0..^π)) β π₯ β (0..^π)) |
77 | 66, 75, 76 | resfvresima 7233 |
. . . . . . . . . . . . . 14
β’ (((π β§ πΉ β Word dom πΌ) β§ π₯ β (0..^π)) β ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯)) = (πΌβ(πΉβπ₯))) |
78 | 63, 77 | sylan 580 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0..^π)) β ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯)) = (πΌβ(πΉβπ₯))) |
79 | 78 | eqcomd 2738 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0..^π)) β (πΌβ(πΉβπ₯)) = ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯))) |
80 | 79 | ex 413 |
. . . . . . . . . . 11
β’ (π β (π₯ β (0..^π) β (πΌβ(πΉβπ₯)) = ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯)))) |
81 | 47, 80 | sylbid 239 |
. . . . . . . . . 10
β’ (π β (π₯ β (0..^(β―βπ»)) β (πΌβ(πΉβπ₯)) = ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯)))) |
82 | 81 | imp 407 |
. . . . . . . . 9
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (πΌβ(πΉβπ₯)) = ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯))) |
83 | 8 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
84 | 6 | fveq1i 6889 |
. . . . . . . . . . 11
β’ (π»βπ₯) = ((πΉ prefix π)βπ₯) |
85 | 10 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0..^(β―βπ»))) β πΉ β Word dom πΌ) |
86 | 28 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0..^(β―βπ»))) β π β (0...(β―βπΉ))) |
87 | | pfxres 14625 |
. . . . . . . . . . . . 13
β’ ((πΉ β Word dom πΌ β§ π β (0...(β―βπΉ))) β (πΉ prefix π) = (πΉ βΎ (0..^π))) |
88 | 85, 86, 87 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (πΉ prefix π) = (πΉ βΎ (0..^π))) |
89 | 88 | fveq1d 6890 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (0..^(β―βπ»))) β ((πΉ prefix π)βπ₯) = ((πΉ βΎ (0..^π))βπ₯)) |
90 | 84, 89 | eqtrid 2784 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (π»βπ₯) = ((πΉ βΎ (0..^π))βπ₯)) |
91 | 83, 90 | fveq12d 6895 |
. . . . . . . . 9
β’ ((π β§ π₯ β (0..^(β―βπ»))) β ((iEdgβπ)β(π»βπ₯)) = ((πΌ βΎ (πΉ β (0..^π)))β((πΉ βΎ (0..^π))βπ₯))) |
92 | 82, 91 | eqtr4d 2775 |
. . . . . . . 8
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) |
93 | 62, 92 | jca 512 |
. . . . . . 7
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯)))) |
94 | 27, 68 | syl 17 |
. . . . . . . . . . 11
β’ (π β (β―βπΉ) β
(β€β₯βπ)) |
95 | 36 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (π β
(β€β₯β(β―βπ»)) = (β€β₯βπ)) |
96 | 94, 95 | eleqtrrd 2836 |
. . . . . . . . . 10
β’ (π β (β―βπΉ) β
(β€β₯β(β―βπ»))) |
97 | | fzoss2 13656 |
. . . . . . . . . 10
β’
((β―βπΉ)
β (β€β₯β(β―βπ»)) β (0..^(β―βπ»)) β
(0..^(β―βπΉ))) |
98 | 96, 97 | syl 17 |
. . . . . . . . 9
β’ (π β (0..^(β―βπ»)) β
(0..^(β―βπΉ))) |
99 | 98 | sselda 3981 |
. . . . . . . 8
β’ ((π β§ π₯ β (0..^(β―βπ»))) β π₯ β (0..^(β―βπΉ))) |
100 | | wkslem1 28853 |
. . . . . . . . 9
β’ (π = π₯ β (if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β if-((πβπ₯) = (πβ(π₯ + 1)), (πΌβ(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯))))) |
101 | 100 | rspcv 3608 |
. . . . . . . 8
β’ (π₯ β
(0..^(β―βπΉ))
β (βπ β
(0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β if-((πβπ₯) = (πβ(π₯ + 1)), (πΌβ(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯))))) |
102 | 99, 101 | syl 17 |
. . . . . . 7
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β if-((πβπ₯) = (πβ(π₯ + 1)), (πΌβ(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯))))) |
103 | | eqeq12 2749 |
. . . . . . . . . 10
β’ (((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β ((πβπ₯) = (πβ(π₯ + 1)) β (πβπ₯) = (πβ(π₯ + 1)))) |
104 | 103 | adantr 481 |
. . . . . . . . 9
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β ((πβπ₯) = (πβ(π₯ + 1)) β (πβπ₯) = (πβ(π₯ + 1)))) |
105 | | simpr 485 |
. . . . . . . . . 10
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) |
106 | | sneq 4637 |
. . . . . . . . . . . 12
β’ ((πβπ₯) = (πβπ₯) β {(πβπ₯)} = {(πβπ₯)}) |
107 | 106 | adantr 481 |
. . . . . . . . . . 11
β’ (((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β {(πβπ₯)} = {(πβπ₯)}) |
108 | 107 | adantr 481 |
. . . . . . . . . 10
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β {(πβπ₯)} = {(πβπ₯)}) |
109 | 105, 108 | eqeq12d 2748 |
. . . . . . . . 9
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β ((πΌβ(πΉβπ₯)) = {(πβπ₯)} β ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)})) |
110 | | preq12 4738 |
. . . . . . . . . . 11
β’ (((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β {(πβπ₯), (πβ(π₯ + 1))} = {(πβπ₯), (πβ(π₯ + 1))}) |
111 | 110 | adantr 481 |
. . . . . . . . . 10
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β {(πβπ₯), (πβ(π₯ + 1))} = {(πβπ₯), (πβ(π₯ + 1))}) |
112 | 111, 105 | sseq12d 4014 |
. . . . . . . . 9
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β ({(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯)) β {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯)))) |
113 | 104, 109,
112 | ifpbi123d 1078 |
. . . . . . . 8
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β (if-((πβπ₯) = (πβ(π₯ + 1)), (πΌβ(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯))))) |
114 | 113 | biimpd 228 |
. . . . . . 7
β’ ((((πβπ₯) = (πβπ₯) β§ (πβ(π₯ + 1)) = (πβ(π₯ + 1))) β§ (πΌβ(πΉβπ₯)) = ((iEdgβπ)β(π»βπ₯))) β (if-((πβπ₯) = (πβ(π₯ + 1)), (πΌβ(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β (πΌβ(πΉβπ₯))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯))))) |
115 | 93, 102, 114 | sylsyld 61 |
. . . . . 6
β’ ((π β§ π₯ β (0..^(β―βπ»))) β (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯))))) |
116 | 115 | com12 32 |
. . . . 5
β’
(βπ β
(0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β ((π β§ π₯ β (0..^(β―βπ»))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯))))) |
117 | 116 | 3ad2ant3 1135 |
. . . 4
β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))) β ((π β§ π₯ β (0..^(β―βπ»))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯))))) |
118 | 45, 117 | mpcom 38 |
. . 3
β’ ((π β§ π₯ β (0..^(β―βπ»))) β if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯)))) |
119 | 118 | ralrimiva 3146 |
. 2
β’ (π β βπ₯ β (0..^(β―βπ»))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯)))) |
120 | 20, 2, 1, 27, 23 | wlkreslem 28915 |
. . 3
β’ (π β π β V) |
121 | | eqid 2732 |
. . . 4
β’
(Vtxβπ) =
(Vtxβπ) |
122 | | eqid 2732 |
. . . 4
β’
(iEdgβπ) =
(iEdgβπ) |
123 | 121, 122 | iswlkg 28859 |
. . 3
β’ (π β V β (π»(Walksβπ)π β (π» β Word dom (iEdgβπ) β§ π:(0...(β―βπ»))βΆ(Vtxβπ) β§ βπ₯ β (0..^(β―βπ»))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯)))))) |
124 | 120, 123 | syl 17 |
. 2
β’ (π β (π»(Walksβπ)π β (π» β Word dom (iEdgβπ) β§ π:(0...(β―βπ»))βΆ(Vtxβπ) β§ βπ₯ β (0..^(β―βπ»))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπ)β(π»βπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπ)β(π»βπ₯)))))) |
125 | 19, 42, 119, 124 | mpbir3and 1342 |
1
β’ (π β π»(Walksβπ)π) |