MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem1 Structured version   Visualization version   GIF version

Theorem wkslem1 29119
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 6891 . . 3 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
2 fvoveq1 7434 . . 3 (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1)))
31, 2eqeq12d 2748 . 2 (𝐴 = 𝐵 → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃‘(𝐵 + 1))))
4 2fveq3 6896 . . 3 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
51sneqd 4640 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
64, 5eqeq12d 2748 . 2 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
71, 2preq12d 4745 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃‘(𝐵 + 1))})
87, 4sseq12d 4015 . 2 (𝐴 = 𝐵 → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵))))
93, 6, 8ifpbi123d 1078 1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  if-wif 1061   = wceq 1541  wss 3948  {csn 4628  {cpr 4630  cfv 6543  (class class class)co 7411  1c1 11113   + caddc 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414
This theorem is referenced by:  wlk1walk  29151  wlkres  29182  wlkp1lem8  29192  crctcshwlkn0lem6  29324  crctcshwlkn0lem7  29325  crctcshwlkn0  29330  pfxwlk  34400  revwlk  34401
  Copyright terms: Public domain W3C validator