Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wkslem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
Ref | Expression |
---|---|
wkslem1 | ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘𝐴) = (𝑃‘𝐵)) | |
2 | fvoveq1 7278 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1))) | |
3 | 1, 2 | eqeq12d 2754 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃‘𝐵) = (𝑃‘(𝐵 + 1)))) |
4 | 2fveq3 6761 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐼‘(𝐹‘𝐴)) = (𝐼‘(𝐹‘𝐵))) | |
5 | 1 | sneqd 4570 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴)} = {(𝑃‘𝐵)}) |
6 | 4, 5 | eqeq12d 2754 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)} ↔ (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)})) |
7 | 1, 2 | preq12d 4674 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))}) |
8 | 7, 4 | sseq12d 3950 | . 2 ⊢ (𝐴 = 𝐵 → ({(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴)) ↔ {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵)))) |
9 | 3, 6, 8 | ifpbi123d 1076 | 1 ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 if-wif 1059 = wceq 1539 ⊆ wss 3883 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: wlk1walk 27908 wlkres 27940 wlkp1lem8 27950 crctcshwlkn0lem6 28081 crctcshwlkn0lem7 28082 crctcshwlkn0 28087 pfxwlk 32985 revwlk 32986 |
Copyright terms: Public domain | W3C validator |