MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem1 Structured version   Visualization version   GIF version

Theorem wkslem1 29588
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 6840 . . 3 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
2 fvoveq1 7392 . . 3 (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1)))
31, 2eqeq12d 2745 . 2 (𝐴 = 𝐵 → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃‘(𝐵 + 1))))
4 2fveq3 6845 . . 3 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
51sneqd 4597 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
64, 5eqeq12d 2745 . 2 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
71, 2preq12d 4701 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃‘(𝐵 + 1))})
87, 4sseq12d 3977 . 2 (𝐴 = 𝐵 → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵))))
93, 6, 8ifpbi123d 1078 1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  if-wif 1062   = wceq 1540  wss 3911  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  wlk1walk  29619  wlkres  29649  wlkp1lem8  29659  crctcshwlkn0lem6  29795  crctcshwlkn0lem7  29796  crctcshwlkn0  29801  pfxwlk  35104  revwlk  35105
  Copyright terms: Public domain W3C validator