MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wkslem1 Structured version   Visualization version   GIF version

Theorem wkslem1 29643
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))

Proof of Theorem wkslem1
StepHypRef Expression
1 fveq2 6920 . . 3 (𝐴 = 𝐵 → (𝑃𝐴) = (𝑃𝐵))
2 fvoveq1 7471 . . 3 (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1)))
31, 2eqeq12d 2756 . 2 (𝐴 = 𝐵 → ((𝑃𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃𝐵) = (𝑃‘(𝐵 + 1))))
4 2fveq3 6925 . . 3 (𝐴 = 𝐵 → (𝐼‘(𝐹𝐴)) = (𝐼‘(𝐹𝐵)))
51sneqd 4660 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴)} = {(𝑃𝐵)})
64, 5eqeq12d 2756 . 2 (𝐴 = 𝐵 → ((𝐼‘(𝐹𝐴)) = {(𝑃𝐴)} ↔ (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}))
71, 2preq12d 4766 . . 3 (𝐴 = 𝐵 → {(𝑃𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃𝐵), (𝑃‘(𝐵 + 1))})
87, 4sseq12d 4042 . 2 (𝐴 = 𝐵 → ({(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴)) ↔ {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵))))
93, 6, 8ifpbi123d 1079 1 (𝐴 = 𝐵 → (if-((𝑃𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹𝐴)) = {(𝑃𝐴)}, {(𝑃𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹𝐴))) ↔ if-((𝑃𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹𝐵)) = {(𝑃𝐵)}, {(𝑃𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  if-wif 1063   = wceq 1537  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  wlk1walk  29675  wlkres  29706  wlkp1lem8  29716  crctcshwlkn0lem6  29848  crctcshwlkn0lem7  29849  crctcshwlkn0  29854  pfxwlk  35091  revwlk  35092
  Copyright terms: Public domain W3C validator