| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wkslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
| Ref | Expression |
|---|---|
| wkslem1 | ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘𝐴) = (𝑃‘𝐵)) | |
| 2 | fvoveq1 7410 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1))) | |
| 3 | 1, 2 | eqeq12d 2745 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃‘𝐵) = (𝑃‘(𝐵 + 1)))) |
| 4 | 2fveq3 6863 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐼‘(𝐹‘𝐴)) = (𝐼‘(𝐹‘𝐵))) | |
| 5 | 1 | sneqd 4601 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴)} = {(𝑃‘𝐵)}) |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)} ↔ (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)})) |
| 7 | 1, 2 | preq12d 4705 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))}) |
| 8 | 7, 4 | sseq12d 3980 | . 2 ⊢ (𝐴 = 𝐵 → ({(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴)) ↔ {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵)))) |
| 9 | 3, 6, 8 | ifpbi123d 1078 | 1 ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 if-wif 1062 = wceq 1540 ⊆ wss 3914 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 1c1 11069 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: wlk1walk 29567 wlkres 29598 wlkp1lem8 29608 crctcshwlkn0lem6 29745 crctcshwlkn0lem7 29746 crctcshwlkn0 29751 pfxwlk 35111 revwlk 35112 |
| Copyright terms: Public domain | W3C validator |