Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wkslem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
Ref | Expression |
---|---|
wkslem1 | ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘𝐴) = (𝑃‘𝐵)) | |
2 | fvoveq1 7298 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑃‘(𝐴 + 1)) = (𝑃‘(𝐵 + 1))) | |
3 | 1, 2 | eqeq12d 2754 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)) ↔ (𝑃‘𝐵) = (𝑃‘(𝐵 + 1)))) |
4 | 2fveq3 6779 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐼‘(𝐹‘𝐴)) = (𝐼‘(𝐹‘𝐵))) | |
5 | 1 | sneqd 4573 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴)} = {(𝑃‘𝐵)}) |
6 | 4, 5 | eqeq12d 2754 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)} ↔ (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)})) |
7 | 1, 2 | preq12d 4677 | . . 3 ⊢ (𝐴 = 𝐵 → {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} = {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))}) |
8 | 7, 4 | sseq12d 3954 | . 2 ⊢ (𝐴 = 𝐵 → ({(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴)) ↔ {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵)))) |
9 | 3, 6, 8 | ifpbi123d 1077 | 1 ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 if-wif 1060 = wceq 1539 ⊆ wss 3887 {csn 4561 {cpr 4563 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: wlk1walk 28006 wlkres 28038 wlkp1lem8 28048 crctcshwlkn0lem6 28180 crctcshwlkn0lem7 28181 crctcshwlkn0 28186 pfxwlk 33085 revwlk 33086 |
Copyright terms: Public domain | W3C validator |