MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem4 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem4 29067
Description: Lemma for crctcshwlkn0 29075. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
Assertion
Ref Expression
crctcshwlkn0lem4 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖,𝑗)   𝑆(𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖,𝑗)   𝐼(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem crctcshwlkn0lem4
StepHypRef Expression
1 crctcshwlkn0lem.p . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
2 crctcshwlkn0lem.s . . . . . . 7 (𝜑𝑆 ∈ (1..^𝑁))
3 elfzoelz 13632 . . . . . . . . . . 11 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℤ)
43zcnd 12667 . . . . . . . . . 10 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℂ)
54adantl 483 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ ℂ)
6 elfzoelz 13632 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
76zcnd 12667 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℂ)
87adantr 482 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑆 ∈ ℂ)
9 1cnd 11209 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 1 ∈ ℂ)
105, 8, 9add32d 11441 . . . . . . . 8 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆))
11 elfzo1 13682 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
12 elfzonn0 13677 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℕ0)
13 nnnn0 12479 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
14 nn0addcl 12507 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0𝑆 ∈ ℕ0) → (𝑗 + 𝑆) ∈ ℕ0)
1514ex 414 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (𝑆 ∈ ℕ0 → (𝑗 + 𝑆) ∈ ℕ0))
1612, 13, 15syl2imc 41 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
17163ad2ant1 1134 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
1811, 17sylbi 216 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
1918imp 408 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℕ0)
20 fzo0ss1 13662 . . . . . . . . . . . . . 14 (1..^𝑁) ⊆ (0..^𝑁)
2120sseli 3979 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁))
22 elfzo0 13673 . . . . . . . . . . . . . 14 (𝑆 ∈ (0..^𝑁) ↔ (𝑆 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
2322simp2bi 1147 . . . . . . . . . . . . 13 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
2421, 23syl 17 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℕ)
2524adantr 482 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑁 ∈ ℕ)
26 elfzo0 13673 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^(𝑁𝑆)) ↔ (𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)))
27 nn0re 12481 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
28 nnre 12219 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
29 nnre 12219 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3028, 29anim12i 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31303adant3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3211, 31sylbi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ (1..^𝑁) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3327, 32anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
34 3anass 1096 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ↔ (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
3533, 34sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36 ltaddsub 11688 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑗 + 𝑆) < 𝑁𝑗 < (𝑁𝑆)))
3736bicomd 222 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
3835, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
3938biimpd 228 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) < 𝑁))
4039ex 414 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → (𝑆 ∈ (1..^𝑁) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) < 𝑁)))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (𝑗 < (𝑁𝑆) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁)))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → ((𝑁𝑆) ∈ ℕ → (𝑗 < (𝑁𝑆) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))))
43423imp 1112 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))
4426, 43sylbi 216 . . . . . . . . . . . 12 (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))
4544impcom 409 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) < 𝑁)
46 elfzo0 13673 . . . . . . . . . . 11 ((𝑗 + 𝑆) ∈ (0..^𝑁) ↔ ((𝑗 + 𝑆) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑗 + 𝑆) < 𝑁))
4719, 25, 45, 46syl3anbrc 1344 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ (0..^𝑁))
4847adantr 482 . . . . . . . . 9 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (𝑗 + 𝑆) ∈ (0..^𝑁))
49 fveq2 6892 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝑃𝑖) = (𝑃‘(𝑗 + 𝑆)))
5049adantl 483 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝑃𝑖) = (𝑃‘(𝑗 + 𝑆)))
51 fvoveq1 7432 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝑃‘(𝑖 + 1)) = (𝑃‘((𝑗 + 𝑆) + 1)))
52 simpr 486 . . . . . . . . . . . . 13 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆))
5352fveq2d 6896 . . . . . . . . . . . 12 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (𝑃‘((𝑗 + 𝑆) + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
5451, 53sylan9eqr 2795 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝑃‘(𝑖 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
5550, 54eqeq12d 2749 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ((𝑃𝑖) = (𝑃‘(𝑖 + 1)) ↔ (𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆))))
56 2fveq3 6897 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
5749sneqd 4641 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → {(𝑃𝑖)} = {(𝑃‘(𝑗 + 𝑆))})
5856, 57eqeq12d 2749 . . . . . . . . . . 11 (𝑖 = (𝑗 + 𝑆) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
5958adantl 483 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
6050, 54preq12d 4746 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))})
6156adantl 483 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
6260, 61sseq12d 4016 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) ↔ {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
6355, 59, 62ifpbi123d 1079 . . . . . . . . 9 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6448, 63rspcdv 3605 . . . . . . . 8 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6510, 64mpdan 686 . . . . . . 7 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
662, 65sylan 581 . . . . . 6 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6766ex 414 . . . . 5 (𝜑 → (𝑗 ∈ (0..^(𝑁𝑆)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))))
681, 67mpid 44 . . . 4 (𝜑 → (𝑗 ∈ (0..^(𝑁𝑆)) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6968imp 408 . . 3 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
70 elfzofz 13648 . . . . 5 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ (0...(𝑁𝑆)))
71 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
722, 71crctcshwlkn0lem2 29065 . . . . 5 ((𝜑𝑗 ∈ (0...(𝑁𝑆))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
7370, 72sylan2 594 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
74 fzofzp1 13729 . . . . 5 (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 1) ∈ (0...(𝑁𝑆)))
752, 71crctcshwlkn0lem2 29065 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁𝑆))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
7674, 75sylan2 594 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
77 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
7877fveq1i 6893 . . . . . 6 (𝐻𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗)
79 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
8079adantr 482 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝐹 ∈ Word 𝐴)
812, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ ℤ)
8281adantr 482 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑆 ∈ ℤ)
83 nnz 12579 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8483adantl 483 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
85 nnz 12579 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
8685adantr 482 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ ℤ)
8784, 86zsubcld 12671 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
8813nn0ge0d 12535 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → 0 ≤ 𝑆)
8988adantr 482 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑆)
90 subge02 11730 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (𝑁𝑆) ≤ 𝑁))
9129, 28, 90syl2anr 598 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝑆 ↔ (𝑁𝑆) ≤ 𝑁))
9289, 91mpbid 231 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ≤ 𝑁)
9387, 84, 923jca 1129 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
94933adant3 1133 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
9511, 94sylbi 216 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
96 eluz2 12828 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝑁𝑆)) ↔ ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
9795, 96sylibr 233 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
98 fzoss2 13660 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁𝑆)) → (0..^(𝑁𝑆)) ⊆ (0..^𝑁))
992, 97, 983syl 18 . . . . . . . . . 10 (𝜑 → (0..^(𝑁𝑆)) ⊆ (0..^𝑁))
10099sselda 3983 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ (0..^𝑁))
101 crctcshwlkn0lem.n . . . . . . . . . 10 𝑁 = (♯‘𝐹)
102101oveq2i 7420 . . . . . . . . 9 (0..^𝑁) = (0..^(♯‘𝐹))
103100, 102eleqtrdi 2844 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ (0..^(♯‘𝐹)))
104 cshwidxmod 14753 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
10580, 82, 103, 104syl3anc 1372 . . . . . . 7 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
106101eqcomi 2742 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
107106oveq2i 7420 . . . . . . . . 9 ((𝑗 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod 𝑁)
10817imp 408 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℕ0)
109 nnm1nn0 12513 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1101093ad2ant2 1135 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 1) ∈ ℕ0)
111110adantr 482 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑁 − 1) ∈ ℕ0)
11227, 31anim12i 614 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
113112, 34sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
114113, 37syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
115133ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑆 ∈ ℕ0)
116115, 14sylan2 594 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 + 𝑆) ∈ ℕ0)
117116nn0zd 12584 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 + 𝑆) ∈ ℤ)
118833ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℤ)
119118adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → 𝑁 ∈ ℤ)
120 zltlem1 12615 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 + 𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑗 + 𝑆) < 𝑁 ↔ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
121117, 119, 120syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → ((𝑗 + 𝑆) < 𝑁 ↔ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
122121biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → ((𝑗 + 𝑆) < 𝑁 → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
123114, 122sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
124123impancom 453 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑗 < (𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
1251243adant2 1132 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
12626, 125sylbi 216 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0..^(𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
127126impcom 409 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ≤ (𝑁 − 1))
128108, 111, 1273jca 1129 . . . . . . . . . . . . 13 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
12911, 128sylanb 582 . . . . . . . . . . . 12 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
130 elfz2nn0 13592 . . . . . . . . . . . 12 ((𝑗 + 𝑆) ∈ (0...(𝑁 − 1)) ↔ ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
131129, 130sylibr 233 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ (0...(𝑁 − 1)))
132 zaddcl 12602 . . . . . . . . . . . . 13 ((𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑗 + 𝑆) ∈ ℤ)
1333, 6, 132syl2anr 598 . . . . . . . . . . . 12 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℤ)
134 zmodid2 13864 . . . . . . . . . . . 12 (((𝑗 + 𝑆) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆) ↔ (𝑗 + 𝑆) ∈ (0...(𝑁 − 1))))
135133, 25, 134syl2anc 585 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆) ↔ (𝑗 + 𝑆) ∈ (0...(𝑁 − 1))))
136131, 135mpbird 257 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆))
1372, 136sylan 581 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆))
138107, 137eqtrid 2785 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod (♯‘𝐹)) = (𝑗 + 𝑆))
139138fveq2d 6896 . . . . . . 7 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) = (𝐹‘(𝑗 + 𝑆)))
140105, 139eqtrd 2773 . . . . . 6 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘(𝑗 + 𝑆)))
14178, 140eqtrid 2785 . . . . 5 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐻𝑗) = (𝐹‘(𝑗 + 𝑆)))
142141fveq2d 6896 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
143 simp1 1137 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
144 simp2 1138 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
145143, 144eqeq12d 2749 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ((𝑄𝑗) = (𝑄‘(𝑗 + 1)) ↔ (𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆))))
146 simp3 1139 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
147143sneqd 4641 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → {(𝑄𝑗)} = {(𝑃‘(𝑗 + 𝑆))})
148146, 147eqeq12d 2749 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ((𝐼‘(𝐻𝑗)) = {(𝑄𝑗)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
149143, 144preq12d 4746 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → {(𝑄𝑗), (𝑄‘(𝑗 + 1))} = {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))})
150149, 146sseq12d 4016 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ({(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)) ↔ {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
151145, 148, 150ifpbi123d 1079 . . . 4 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
15273, 76, 142, 151syl3anc 1372 . . 3 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
15369, 152mpbird 257 . 2 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
154153ralrimiva 3147 1 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  if-wif 1062  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3949  ifcif 4529  {csn 4629  {cpr 4631   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cn 12212  0cn0 12472  cz 12558  cuz 12822  ...cfz 13484  ..^cfzo 13627   mod cmo 13834  chash 14290  Word cword 14464   cyclShift ccsh 14738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-csh 14739
This theorem is referenced by:  crctcshwlkn0lem7  29070
  Copyright terms: Public domain W3C validator