MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem4 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem4 29716
Description: Lemma for crctcshwlkn0 29724. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
Assertion
Ref Expression
crctcshwlkn0lem4 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖,𝑗)   𝑆(𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖,𝑗)   𝐼(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem crctcshwlkn0lem4
StepHypRef Expression
1 crctcshwlkn0lem.p . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
2 crctcshwlkn0lem.s . . . . . . 7 (𝜑𝑆 ∈ (1..^𝑁))
3 elfzoelz 13596 . . . . . . . . . . 11 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℤ)
43zcnd 12615 . . . . . . . . . 10 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℂ)
54adantl 481 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ ℂ)
6 elfzoelz 13596 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
76zcnd 12615 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℂ)
87adantr 480 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑆 ∈ ℂ)
9 1cnd 11145 . . . . . . . . 9 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 1 ∈ ℂ)
105, 8, 9add32d 11378 . . . . . . . 8 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆))
11 elfzo1 13649 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
12 elfzonn0 13644 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ ℕ0)
13 nnnn0 12425 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℕ → 𝑆 ∈ ℕ0)
14 nn0addcl 12453 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0𝑆 ∈ ℕ0) → (𝑗 + 𝑆) ∈ ℕ0)
1514ex 412 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (𝑆 ∈ ℕ0 → (𝑗 + 𝑆) ∈ ℕ0))
1612, 13, 15syl2imc 41 . . . . . . . . . . . . . 14 (𝑆 ∈ ℕ → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
17163ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
1811, 17sylbi 217 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 𝑆) ∈ ℕ0))
1918imp 406 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℕ0)
20 fzo0ss1 13626 . . . . . . . . . . . . . 14 (1..^𝑁) ⊆ (0..^𝑁)
2120sseli 3939 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁))
22 elfzo0 13637 . . . . . . . . . . . . . 14 (𝑆 ∈ (0..^𝑁) ↔ (𝑆 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
2322simp2bi 1146 . . . . . . . . . . . . 13 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
2421, 23syl 17 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℕ)
2524adantr 480 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → 𝑁 ∈ ℕ)
26 elfzo0 13637 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^(𝑁𝑆)) ↔ (𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)))
27 nn0re 12427 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
28 nnre 12169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
29 nnre 12169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3028, 29anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31303adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3211, 31sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ (1..^𝑁) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
3327, 32anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
34 3anass 1094 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) ↔ (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
3533, 34sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36 ltaddsub 11628 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑗 + 𝑆) < 𝑁𝑗 < (𝑁𝑆)))
3736bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
3835, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
3938biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑆 ∈ (1..^𝑁)) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) < 𝑁))
4039ex 412 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → (𝑆 ∈ (1..^𝑁) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) < 𝑁)))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (𝑗 < (𝑁𝑆) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁)))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → ((𝑁𝑆) ∈ ℕ → (𝑗 < (𝑁𝑆) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))))
43423imp 1110 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))
4426, 43sylbi 217 . . . . . . . . . . . 12 (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑆 ∈ (1..^𝑁) → (𝑗 + 𝑆) < 𝑁))
4544impcom 407 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) < 𝑁)
46 elfzo0 13637 . . . . . . . . . . 11 ((𝑗 + 𝑆) ∈ (0..^𝑁) ↔ ((𝑗 + 𝑆) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑗 + 𝑆) < 𝑁))
4719, 25, 45, 46syl3anbrc 1344 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ (0..^𝑁))
4847adantr 480 . . . . . . . . 9 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (𝑗 + 𝑆) ∈ (0..^𝑁))
49 fveq2 6840 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝑃𝑖) = (𝑃‘(𝑗 + 𝑆)))
5049adantl 481 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝑃𝑖) = (𝑃‘(𝑗 + 𝑆)))
51 fvoveq1 7392 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝑃‘(𝑖 + 1)) = (𝑃‘((𝑗 + 𝑆) + 1)))
52 simpr 484 . . . . . . . . . . . . 13 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆))
5352fveq2d 6844 . . . . . . . . . . . 12 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (𝑃‘((𝑗 + 𝑆) + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
5451, 53sylan9eqr 2786 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝑃‘(𝑖 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
5550, 54eqeq12d 2745 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ((𝑃𝑖) = (𝑃‘(𝑖 + 1)) ↔ (𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆))))
56 2fveq3 6845 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
5749sneqd 4597 . . . . . . . . . . . 12 (𝑖 = (𝑗 + 𝑆) → {(𝑃𝑖)} = {(𝑃‘(𝑗 + 𝑆))})
5856, 57eqeq12d 2745 . . . . . . . . . . 11 (𝑖 = (𝑗 + 𝑆) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
5958adantl 481 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
6050, 54preq12d 4701 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))})
6156adantl 481 . . . . . . . . . . 11 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (𝐼‘(𝐹𝑖)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
6260, 61sseq12d 3977 . . . . . . . . . 10 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) ↔ {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
6355, 59, 62ifpbi123d 1078 . . . . . . . . 9 ((((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) ∧ 𝑖 = (𝑗 + 𝑆)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6448, 63rspcdv 3577 . . . . . . . 8 (((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) ∧ ((𝑗 + 𝑆) + 1) = ((𝑗 + 1) + 𝑆)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6510, 64mpdan 687 . . . . . . 7 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
662, 65sylan 580 . . . . . 6 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6766ex 412 . . . . 5 (𝜑 → (𝑗 ∈ (0..^(𝑁𝑆)) → (∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))))
681, 67mpid 44 . . . 4 (𝜑 → (𝑗 ∈ (0..^(𝑁𝑆)) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
6968imp 406 . . 3 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
70 elfzofz 13612 . . . . 5 (𝑗 ∈ (0..^(𝑁𝑆)) → 𝑗 ∈ (0...(𝑁𝑆)))
71 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
722, 71crctcshwlkn0lem2 29714 . . . . 5 ((𝜑𝑗 ∈ (0...(𝑁𝑆))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
7370, 72sylan2 593 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
74 fzofzp1 13701 . . . . 5 (𝑗 ∈ (0..^(𝑁𝑆)) → (𝑗 + 1) ∈ (0...(𝑁𝑆)))
752, 71crctcshwlkn0lem2 29714 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁𝑆))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
7674, 75sylan2 593 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
77 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
7877fveq1i 6841 . . . . . 6 (𝐻𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗)
79 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
8079adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝐹 ∈ Word 𝐴)
812, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ ℤ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑆 ∈ ℤ)
83 nnz 12526 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8483adantl 481 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
85 nnz 12526 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ ℤ)
8784, 86zsubcld 12619 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
8813nn0ge0d 12482 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → 0 ≤ 𝑆)
8988adantr 480 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑆)
90 subge02 11670 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (𝑁𝑆) ≤ 𝑁))
9129, 28, 90syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝑆 ↔ (𝑁𝑆) ≤ 𝑁))
9289, 91mpbid 232 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ≤ 𝑁)
9387, 84, 923jca 1128 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
94933adant3 1132 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
9511, 94sylbi 217 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
96 eluz2 12775 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝑁𝑆)) ↔ ((𝑁𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑆) ≤ 𝑁))
9795, 96sylibr 234 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
98 fzoss2 13624 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁𝑆)) → (0..^(𝑁𝑆)) ⊆ (0..^𝑁))
992, 97, 983syl 18 . . . . . . . . . 10 (𝜑 → (0..^(𝑁𝑆)) ⊆ (0..^𝑁))
10099sselda 3943 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ (0..^𝑁))
101 crctcshwlkn0lem.n . . . . . . . . . 10 𝑁 = (♯‘𝐹)
102101oveq2i 7380 . . . . . . . . 9 (0..^𝑁) = (0..^(♯‘𝐹))
103100, 102eleqtrdi 2838 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → 𝑗 ∈ (0..^(♯‘𝐹)))
104 cshwidxmod 14744 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
10580, 82, 103, 104syl3anc 1373 . . . . . . 7 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
106101eqcomi 2738 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
107106oveq2i 7380 . . . . . . . . 9 ((𝑗 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod 𝑁)
10817imp 406 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℕ0)
109 nnm1nn0 12459 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1101093ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 1) ∈ ℕ0)
111110adantr 480 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑁 − 1) ∈ ℕ0)
11227, 31anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
113112, 34sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
114113, 37syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 < (𝑁𝑆) ↔ (𝑗 + 𝑆) < 𝑁))
115133ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑆 ∈ ℕ0)
116115, 14sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 + 𝑆) ∈ ℕ0)
117116nn0zd 12531 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 + 𝑆) ∈ ℤ)
118833ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℤ)
119118adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → 𝑁 ∈ ℤ)
120 zltlem1 12562 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 + 𝑆) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑗 + 𝑆) < 𝑁 ↔ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
121117, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → ((𝑗 + 𝑆) < 𝑁 ↔ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
122121biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → ((𝑗 + 𝑆) < 𝑁 → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
123114, 122sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) → (𝑗 < (𝑁𝑆) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
124123impancom 451 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑗 < (𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
1251243adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0 ∧ (𝑁𝑆) ∈ ℕ ∧ 𝑗 < (𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
12626, 125sylbi 217 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0..^(𝑁𝑆)) → ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑗 + 𝑆) ≤ (𝑁 − 1)))
127126impcom 407 . . . . . . . . . . . . . 14 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ≤ (𝑁 − 1))
128108, 111, 1273jca 1128 . . . . . . . . . . . . 13 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
12911, 128sylanb 581 . . . . . . . . . . . 12 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
130 elfz2nn0 13555 . . . . . . . . . . . 12 ((𝑗 + 𝑆) ∈ (0...(𝑁 − 1)) ↔ ((𝑗 + 𝑆) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝑗 + 𝑆) ≤ (𝑁 − 1)))
131129, 130sylibr 234 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ (0...(𝑁 − 1)))
132 zaddcl 12549 . . . . . . . . . . . . 13 ((𝑗 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑗 + 𝑆) ∈ ℤ)
1333, 6, 132syl2anr 597 . . . . . . . . . . . 12 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (𝑗 + 𝑆) ∈ ℤ)
134 zmodid2 13837 . . . . . . . . . . . 12 (((𝑗 + 𝑆) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆) ↔ (𝑗 + 𝑆) ∈ (0...(𝑁 − 1))))
135133, 25, 134syl2anc 584 . . . . . . . . . . 11 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → (((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆) ↔ (𝑗 + 𝑆) ∈ (0...(𝑁 − 1))))
136131, 135mpbird 257 . . . . . . . . . 10 ((𝑆 ∈ (1..^𝑁) ∧ 𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆))
1372, 136sylan 580 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod 𝑁) = (𝑗 + 𝑆))
138107, 137eqtrid 2776 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝑗 + 𝑆) mod (♯‘𝐹)) = (𝑗 + 𝑆))
139138fveq2d 6844 . . . . . . 7 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) = (𝐹‘(𝑗 + 𝑆)))
140105, 139eqtrd 2764 . . . . . 6 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘(𝑗 + 𝑆)))
14178, 140eqtrid 2776 . . . . 5 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐻𝑗) = (𝐹‘(𝑗 + 𝑆)))
142141fveq2d 6844 . . . 4 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
143 simp1 1136 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)))
144 simp2 1137 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)))
145143, 144eqeq12d 2745 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ((𝑄𝑗) = (𝑄‘(𝑗 + 1)) ↔ (𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆))))
146 simp3 1138 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆))))
147143sneqd 4597 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → {(𝑄𝑗)} = {(𝑃‘(𝑗 + 𝑆))})
148146, 147eqeq12d 2745 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ((𝐼‘(𝐻𝑗)) = {(𝑄𝑗)} ↔ (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}))
149143, 144preq12d 4701 . . . . . 6 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → {(𝑄𝑗), (𝑄‘(𝑗 + 1))} = {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))})
150149, 146sseq12d 3977 . . . . 5 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → ({(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)) ↔ {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆)))))
151145, 148, 150ifpbi123d 1078 . . . 4 (((𝑄𝑗) = (𝑃‘(𝑗 + 𝑆)) ∧ (𝑄‘(𝑗 + 1)) = (𝑃‘((𝑗 + 1) + 𝑆)) ∧ (𝐼‘(𝐻𝑗)) = (𝐼‘(𝐹‘(𝑗 + 𝑆)))) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
15273, 76, 142, 151syl3anc 1373 . . 3 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑃‘(𝑗 + 𝑆)) = (𝑃‘((𝑗 + 1) + 𝑆)), (𝐼‘(𝐹‘(𝑗 + 𝑆))) = {(𝑃‘(𝑗 + 𝑆))}, {(𝑃‘(𝑗 + 𝑆)), (𝑃‘((𝑗 + 1) + 𝑆))} ⊆ (𝐼‘(𝐹‘(𝑗 + 𝑆))))))
15369, 152mpbird 257 . 2 ((𝜑𝑗 ∈ (0..^(𝑁𝑆))) → if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
154153ralrimiva 3125 1 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  ifcif 4484  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591   mod cmo 13807  chash 14271  Word cword 14454   cyclShift ccsh 14729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-csh 14730
This theorem is referenced by:  crctcshwlkn0lem7  29719
  Copyright terms: Public domain W3C validator