Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
2 | 1 | wlkf 27508 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
3 | 2 | adantr 484 |
. . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
4 | | pfxcl 14091 |
. . 3
⊢ (𝐹 ∈ Word dom
(iEdg‘𝐺) →
(𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺)) |
5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺)) |
6 | | eqid 2758 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | 6 | wlkp 27510 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
8 | 7 | adantr 484 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
9 | | elfzuz3 12958 |
. . . . . . 7
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝐿)) |
10 | | fzss2 13001 |
. . . . . . 7
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹))) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (0...𝐿) ⊆
(0...(♯‘𝐹))) |
12 | 11 | adantl 485 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆
(0...(♯‘𝐹))) |
13 | 8, 12 | fssresd 6534 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)) |
14 | | pfxlen 14097 |
. . . . . . 7
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝐿 ∈
(0...(♯‘𝐹)))
→ (♯‘(𝐹
prefix 𝐿)) = 𝐿) |
15 | 2, 14 | sylan 583 |
. . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿) |
16 | 15 | oveq2d 7171 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0...(♯‘(𝐹
prefix 𝐿))) = (0...𝐿)) |
17 | 16 | feq2d 6488 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))) |
18 | 13, 17 | mpbird 260 |
. . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)) |
19 | 6 | wlkpwrd 27511 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
20 | | fzp1elp1 13014 |
. . . . . . . 8
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (𝐿 + 1) ∈
(0...((♯‘𝐹) +
1))) |
21 | 20 | adantl 485 |
. . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1))) |
22 | | wlklenvp1 27512 |
. . . . . . . . 9
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
23 | 22 | oveq2d 7171 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1))) |
24 | 23 | adantr 484 |
. . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0...(♯‘𝑃)) =
(0...((♯‘𝐹) +
1))) |
25 | 21, 24 | eleqtrrd 2855 |
. . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃))) |
26 | | pfxres 14093 |
. . . . . 6
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1)))) |
27 | 19, 25, 26 | syl2an2r 684 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1)))) |
28 | | elfzelz 12961 |
. . . . . . . 8
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ 𝐿 ∈
ℤ) |
29 | | fzval3 13160 |
. . . . . . . 8
⊢ (𝐿 ∈ ℤ →
(0...𝐿) = (0..^(𝐿 + 1))) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (0...𝐿) =
(0..^(𝐿 +
1))) |
31 | 30 | adantl 485 |
. . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1))) |
32 | 31 | reseq2d 5827 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1)))) |
33 | 27, 32 | eqtr4d 2796 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿))) |
34 | 33 | feq1d 6487 |
. . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))) |
35 | 18, 34 | mpbird 260 |
. 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)) |
36 | 6, 1 | wlkprop 27505 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))))) |
37 | 36 | simp3d 1141 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) |
38 | 37 | adantr 484 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) |
39 | 38 | adantr 484 |
. . . 4
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) |
40 | 15 | oveq2d 7171 |
. . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0..^(♯‘(𝐹
prefix 𝐿))) = (0..^𝐿)) |
41 | 40 | eleq2d 2837 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿))) |
42 | 33 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘)) |
43 | 42 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘)) |
44 | | fzossfz 13110 |
. . . . . . . . . . . . . 14
⊢
(0..^𝐿) ⊆
(0...𝐿) |
45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿)) |
46 | 45 | sselda 3894 |
. . . . . . . . . . . 12
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿)) |
47 | 46 | fvresd 6682 |
. . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃‘𝑘)) |
48 | 43, 47 | eqtr2d 2794 |
. . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘)) |
49 | 33 | fveq1d 6664 |
. . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1))) |
50 | 49 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1))) |
51 | | fzofzp1 13188 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿)) |
52 | 51 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿)) |
53 | 52 | fvresd 6682 |
. . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) |
54 | 50, 53 | eqtr2d 2794 |
. . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) |
55 | 48, 54 | jca 515 |
. . . . . . . . 9
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) |
56 | 55 | ex 416 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))) |
57 | 41, 56 | sylbid 243 |
. . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))) |
58 | 57 | imp 410 |
. . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) |
59 | 3 | ancli 552 |
. . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺))) |
60 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿)) |
61 | 60 | fvresd 6682 |
. . . . . . . . . . . . 13
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹‘𝑘)) |
62 | 61 | fveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
63 | 59, 62 | sylan 583 |
. . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
64 | 63 | eqcomd 2764 |
. . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) |
65 | 64 | ex 416 |
. . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))) |
66 | 41, 65 | sylbid 243 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))) |
67 | 66 | imp 410 |
. . . . . . 7
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) |
68 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹))) |
69 | | pfxres 14093 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝐿 ∈
(0...(♯‘𝐹)))
→ (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿))) |
70 | 3, 68, 69 | syl2an2r 684 |
. . . . . . . . 9
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿))) |
71 | 70 | fveq1d 6664 |
. . . . . . . 8
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘)) |
72 | 71 | fveq2d 6666 |
. . . . . . 7
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) |
73 | 67, 72 | eqtr4d 2796 |
. . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) |
74 | 58, 73 | jca 515 |
. . . . 5
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) |
75 | 9 | adantl 485 |
. . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘𝐿)) |
76 | 15 | fveq2d 6666 |
. . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(ℤ≥‘(♯‘(𝐹 prefix 𝐿))) = (ℤ≥‘𝐿)) |
77 | 75, 76 | eleqtrrd 2855 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘(♯‘(𝐹 prefix 𝐿)))) |
78 | | fzoss2 13119 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ (ℤ≥‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹))) |
79 | 77, 78 | syl 17 |
. . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0..^(♯‘(𝐹
prefix 𝐿))) ⊆
(0..^(♯‘𝐹))) |
80 | 79 | sselda 3894 |
. . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹))) |
81 | | wkslem1 27501 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
82 | 81 | rspcv 3538 |
. . . . . 6
⊢ (𝑘 ∈
(0..^(♯‘𝐹))
→ (∀𝑥 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
83 | 80, 82 | syl 17 |
. . . . 5
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
84 | | eqeq12 2772 |
. . . . . . . 8
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) |
85 | 84 | adantr 484 |
. . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) |
86 | | simpr 488 |
. . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) |
87 | | sneq 4535 |
. . . . . . . . . 10
⊢ ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) |
88 | 87 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) |
89 | 88 | adantr 484 |
. . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) |
90 | 86, 89 | eqeq12d 2774 |
. . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)})) |
91 | | preq12 4631 |
. . . . . . . . 9
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))}) |
92 | 91 | adantr 484 |
. . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))}) |
93 | 92, 86 | sseq12d 3927 |
. . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) |
94 | 85, 90, 93 | ifpbi123d 1075 |
. . . . . 6
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) |
95 | 94 | biimpd 232 |
. . . . 5
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) |
96 | 74, 83, 95 | sylsyld 61 |
. . . 4
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) |
97 | 39, 96 | mpd 15 |
. . 3
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) |
98 | 97 | ralrimiva 3113 |
. 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈
(0..^(♯‘(𝐹
prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) |
99 | | wlkv 27506 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
100 | 99 | simp1d 1139 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐺 ∈ V) |
101 | 100 | adantr 484 |
. . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V) |
102 | 6, 1 | iswlkg 27507 |
. . 3
⊢ (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))) |
103 | 101, 102 | syl 17 |
. 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))) |
104 | 5, 35, 98, 103 | mpbir3and 1339 |
1
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1))) |