Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxwlk Structured version   Visualization version   GIF version

Theorem pfxwlk 35151
Description: A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
pfxwlk ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))

Proof of Theorem pfxwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 29599 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
32adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 pfxcl 14700 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
53, 4syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
6 eqid 2736 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
76wlkp 29601 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
87adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
9 elfzuz3 13543 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝐿))
10 fzss2 13586 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
119, 10syl 17 . . . . . 6 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
1211adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
138, 12fssresd 6750 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))
14 pfxlen 14706 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
152, 14sylan 580 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
1615oveq2d 7426 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘(𝐹 prefix 𝐿))) = (0...𝐿))
1716feq2d 6697 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)))
1813, 17mpbird 257 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
196wlkpwrd 29602 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
20 fzp1elp1 13599 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
2120adantl 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
22 wlklenvp1 29603 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
2322oveq2d 7426 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2423adantr 480 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2521, 24eleqtrrd 2838 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃)))
26 pfxres 14702 . . . . . 6 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
2719, 25, 26syl2an2r 685 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
28 elfzelz 13546 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → 𝐿 ∈ ℤ)
29 fzval3 13755 . . . . . . . 8 (𝐿 ∈ ℤ → (0...𝐿) = (0..^(𝐿 + 1)))
3028, 29syl 17 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) = (0..^(𝐿 + 1)))
3130adantl 481 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1)))
3231reseq2d 5971 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1))))
3327, 32eqtr4d 2774 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿)))
3433feq1d 6695 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)))
3518, 34mpbird 257 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
366, 1wlkprop 29596 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
3736simp3d 1144 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3837adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3938adantr 480 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
4015oveq2d 7426 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) = (0..^𝐿))
4140eleq2d 2821 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿)))
4233fveq1d 6883 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
4342adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
44 fzossfz 13700 . . . . . . . . . . . . . 14 (0..^𝐿) ⊆ (0...𝐿)
4544a1i 11 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿))
4645sselda 3963 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿))
4746fvresd 6901 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃𝑘))
4843, 47eqtr2d 2772 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘))
4933fveq1d 6883 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
5049adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
51 fzofzp1 13785 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿))
5251adantl 481 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿))
5352fvresd 6901 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
5450, 53eqtr2d 2772 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))
5548, 54jca 511 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
5655ex 412 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5741, 56sylbid 240 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5857imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
593ancli 548 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)))
60 simpr 484 . . . . . . . . . . . . . 14 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿))
6160fvresd 6901 . . . . . . . . . . . . 13 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹𝑘))
6261fveq2d 6885 . . . . . . . . . . . 12 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6359, 62sylan 580 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6463eqcomd 2742 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
6564ex 412 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6641, 65sylbid 240 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6766imp 406 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
68 simplr 768 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹)))
69 pfxres 14702 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
703, 68, 69syl2an2r 685 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
7170fveq1d 6883 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘))
7271fveq2d 6885 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
7367, 72eqtr4d 2774 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
7458, 73jca 511 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
759adantl 481 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝐿))
7615fveq2d 6885 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (ℤ‘(♯‘(𝐹 prefix 𝐿))) = (ℤ𝐿))
7775, 76eleqtrrd 2838 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))))
78 fzoss2 13709 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
7977, 78syl 17 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
8079sselda 3963 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
81 wkslem1 29592 . . . . . . 7 (𝑥 = 𝑘 → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8281rspcv 3602 . . . . . 6 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8380, 82syl 17 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
84 eqeq12 2753 . . . . . . . 8 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
8584adantr 480 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
86 simpr 484 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
87 sneq 4616 . . . . . . . . . 10 ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8887adantr 480 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8988adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
9086, 89eqeq12d 2752 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}))
91 preq12 4716 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9291adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9392, 86sseq12d 3997 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9485, 90, 93ifpbi123d 1078 . . . . . 6 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9594biimpd 229 . . . . 5 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9674, 83, 95sylsyld 61 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9739, 96mpd 15 . . 3 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9897ralrimiva 3133 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
99 wlkv 29597 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
10099simp1d 1142 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
101100adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V)
1026, 1iswlkg 29598 . . 3 (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
103101, 102syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
1045, 35, 98, 103mpbir3and 1343 1 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  {csn 4606  {cpr 4608   class class class wbr 5124  dom cdm 5659  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cz 12593  cuz 12857  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536   prefix cpfx 14693  Vtxcvtx 28980  iEdgciedg 28981  Walkscwlks 29581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-substr 14664  df-pfx 14694  df-wlks 29584
This theorem is referenced by:  swrdwlk  35154
  Copyright terms: Public domain W3C validator