Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxwlk Structured version   Visualization version   GIF version

Theorem pfxwlk 35189
Description: A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
pfxwlk ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))

Proof of Theorem pfxwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 29595 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
32adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 pfxcl 14587 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
53, 4syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
6 eqid 2733 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
76wlkp 29597 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
87adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
9 elfzuz3 13423 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝐿))
10 fzss2 13466 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
119, 10syl 17 . . . . . 6 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
1211adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
138, 12fssresd 6695 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))
14 pfxlen 14593 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
152, 14sylan 580 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
1615oveq2d 7368 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘(𝐹 prefix 𝐿))) = (0...𝐿))
1716feq2d 6640 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)))
1813, 17mpbird 257 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
196wlkpwrd 29598 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
20 fzp1elp1 13479 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
2120adantl 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
22 wlklenvp1 29599 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
2322oveq2d 7368 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2423adantr 480 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2521, 24eleqtrrd 2836 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃)))
26 pfxres 14589 . . . . . 6 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
2719, 25, 26syl2an2r 685 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
28 elfzelz 13426 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → 𝐿 ∈ ℤ)
29 fzval3 13636 . . . . . . . 8 (𝐿 ∈ ℤ → (0...𝐿) = (0..^(𝐿 + 1)))
3028, 29syl 17 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) = (0..^(𝐿 + 1)))
3130adantl 481 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1)))
3231reseq2d 5932 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1))))
3327, 32eqtr4d 2771 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿)))
3433feq1d 6638 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)))
3518, 34mpbird 257 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
366, 1wlkprop 29592 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
3736simp3d 1144 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3837adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3938adantr 480 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
4015oveq2d 7368 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) = (0..^𝐿))
4140eleq2d 2819 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿)))
4233fveq1d 6830 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
4342adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
44 fzossfz 13580 . . . . . . . . . . . . . 14 (0..^𝐿) ⊆ (0...𝐿)
4544a1i 11 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿))
4645sselda 3930 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿))
4746fvresd 6848 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃𝑘))
4843, 47eqtr2d 2769 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘))
4933fveq1d 6830 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
5049adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
51 fzofzp1 13666 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿))
5251adantl 481 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿))
5352fvresd 6848 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
5450, 53eqtr2d 2769 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))
5548, 54jca 511 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
5655ex 412 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5741, 56sylbid 240 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5857imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
593ancli 548 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)))
60 simpr 484 . . . . . . . . . . . . . 14 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿))
6160fvresd 6848 . . . . . . . . . . . . 13 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹𝑘))
6261fveq2d 6832 . . . . . . . . . . . 12 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6359, 62sylan 580 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6463eqcomd 2739 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
6564ex 412 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6641, 65sylbid 240 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6766imp 406 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
68 simplr 768 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹)))
69 pfxres 14589 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
703, 68, 69syl2an2r 685 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
7170fveq1d 6830 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘))
7271fveq2d 6832 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
7367, 72eqtr4d 2771 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
7458, 73jca 511 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
759adantl 481 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝐿))
7615fveq2d 6832 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (ℤ‘(♯‘(𝐹 prefix 𝐿))) = (ℤ𝐿))
7775, 76eleqtrrd 2836 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))))
78 fzoss2 13589 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
7977, 78syl 17 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
8079sselda 3930 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
81 wkslem1 29588 . . . . . . 7 (𝑥 = 𝑘 → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8281rspcv 3569 . . . . . 6 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8380, 82syl 17 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
84 eqeq12 2750 . . . . . . . 8 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
8584adantr 480 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
86 simpr 484 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
87 sneq 4585 . . . . . . . . . 10 ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8887adantr 480 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8988adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
9086, 89eqeq12d 2749 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}))
91 preq12 4687 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9291adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9392, 86sseq12d 3964 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9485, 90, 93ifpbi123d 1078 . . . . . 6 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9594biimpd 229 . . . . 5 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9674, 83, 95sylsyld 61 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9739, 96mpd 15 . . 3 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9897ralrimiva 3125 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
99 wlkv 29593 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
10099simp1d 1142 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
101100adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V)
1026, 1iswlkg 29594 . . 3 (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
103101, 102syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
1045, 35, 98, 103mpbir3and 1343 1 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  {csn 4575  {cpr 4577   class class class wbr 5093  dom cdm 5619  cres 5621  wf 6482  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cz 12475  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   prefix cpfx 14580  Vtxcvtx 28976  iEdgciedg 28977  Walkscwlks 29577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551  df-pfx 14581  df-wlks 29580
This theorem is referenced by:  swrdwlk  35192
  Copyright terms: Public domain W3C validator