Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxwlk Structured version   Visualization version   GIF version

Theorem pfxwlk 32985
Description: A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
pfxwlk ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))

Proof of Theorem pfxwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27884 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
32adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 pfxcl 14318 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
53, 4syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
6 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
76wlkp 27886 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
87adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
9 elfzuz3 13182 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝐿))
10 fzss2 13225 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
119, 10syl 17 . . . . . 6 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
1211adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
138, 12fssresd 6625 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))
14 pfxlen 14324 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
152, 14sylan 579 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
1615oveq2d 7271 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘(𝐹 prefix 𝐿))) = (0...𝐿))
1716feq2d 6570 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)))
1813, 17mpbird 256 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
196wlkpwrd 27887 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
20 fzp1elp1 13238 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
2120adantl 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
22 wlklenvp1 27888 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
2322oveq2d 7271 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2423adantr 480 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2521, 24eleqtrrd 2842 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃)))
26 pfxres 14320 . . . . . 6 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
2719, 25, 26syl2an2r 681 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
28 elfzelz 13185 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → 𝐿 ∈ ℤ)
29 fzval3 13384 . . . . . . . 8 (𝐿 ∈ ℤ → (0...𝐿) = (0..^(𝐿 + 1)))
3028, 29syl 17 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) = (0..^(𝐿 + 1)))
3130adantl 481 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1)))
3231reseq2d 5880 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1))))
3327, 32eqtr4d 2781 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿)))
3433feq1d 6569 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)))
3518, 34mpbird 256 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
366, 1wlkprop 27881 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
3736simp3d 1142 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3837adantr 480 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3938adantr 480 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
4015oveq2d 7271 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) = (0..^𝐿))
4140eleq2d 2824 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿)))
4233fveq1d 6758 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
4342adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
44 fzossfz 13334 . . . . . . . . . . . . . 14 (0..^𝐿) ⊆ (0...𝐿)
4544a1i 11 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿))
4645sselda 3917 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿))
4746fvresd 6776 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃𝑘))
4843, 47eqtr2d 2779 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘))
4933fveq1d 6758 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
5049adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
51 fzofzp1 13412 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿))
5251adantl 481 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿))
5352fvresd 6776 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
5450, 53eqtr2d 2779 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))
5548, 54jca 511 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
5655ex 412 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5741, 56sylbid 239 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5857imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
593ancli 548 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)))
60 simpr 484 . . . . . . . . . . . . . 14 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿))
6160fvresd 6776 . . . . . . . . . . . . 13 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹𝑘))
6261fveq2d 6760 . . . . . . . . . . . 12 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6359, 62sylan 579 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6463eqcomd 2744 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
6564ex 412 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6641, 65sylbid 239 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6766imp 406 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
68 simplr 765 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹)))
69 pfxres 14320 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
703, 68, 69syl2an2r 681 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
7170fveq1d 6758 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘))
7271fveq2d 6760 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
7367, 72eqtr4d 2781 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
7458, 73jca 511 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
759adantl 481 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝐿))
7615fveq2d 6760 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (ℤ‘(♯‘(𝐹 prefix 𝐿))) = (ℤ𝐿))
7775, 76eleqtrrd 2842 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))))
78 fzoss2 13343 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
7977, 78syl 17 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
8079sselda 3917 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
81 wkslem1 27877 . . . . . . 7 (𝑥 = 𝑘 → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8281rspcv 3547 . . . . . 6 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8380, 82syl 17 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
84 eqeq12 2755 . . . . . . . 8 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
8584adantr 480 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
86 simpr 484 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
87 sneq 4568 . . . . . . . . . 10 ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8887adantr 480 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8988adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
9086, 89eqeq12d 2754 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}))
91 preq12 4668 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9291adantr 480 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9392, 86sseq12d 3950 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9485, 90, 93ifpbi123d 1076 . . . . . 6 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9594biimpd 228 . . . . 5 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9674, 83, 95sylsyld 61 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9739, 96mpd 15 . . 3 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9897ralrimiva 3107 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
99 wlkv 27882 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
10099simp1d 1140 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
101100adantr 480 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V)
1026, 1iswlkg 27883 . . 3 (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
103101, 102syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
1045, 35, 98, 103mpbir3and 1340 1 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   prefix cpfx 14311  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282  df-pfx 14312  df-wlks 27869
This theorem is referenced by:  swrdwlk  32988
  Copyright terms: Public domain W3C validator