Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
2 | 1 | wlkf 28860 |
. . . 4
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
3 | 2 | adantr 481 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β πΉ β Word dom (iEdgβπΊ)) |
4 | | pfxcl 14623 |
. . 3
β’ (πΉ β Word dom
(iEdgβπΊ) β
(πΉ prefix πΏ) β Word dom (iEdgβπΊ)) |
5 | 3, 4 | syl 17 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (πΉ prefix πΏ) β Word dom (iEdgβπΊ)) |
6 | | eqid 2732 |
. . . . . . 7
β’
(VtxβπΊ) =
(VtxβπΊ) |
7 | 6 | wlkp 28862 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
8 | 7 | adantr 481 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
9 | | elfzuz3 13494 |
. . . . . . 7
β’ (πΏ β
(0...(β―βπΉ))
β (β―βπΉ)
β (β€β₯βπΏ)) |
10 | | fzss2 13537 |
. . . . . . 7
β’
((β―βπΉ)
β (β€β₯βπΏ) β (0...πΏ) β (0...(β―βπΉ))) |
11 | 9, 10 | syl 17 |
. . . . . 6
β’ (πΏ β
(0...(β―βπΉ))
β (0...πΏ) β
(0...(β―βπΉ))) |
12 | 11 | adantl 482 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (0...πΏ) β
(0...(β―βπΉ))) |
13 | 8, 12 | fssresd 6755 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π βΎ (0...πΏ)):(0...πΏ)βΆ(VtxβπΊ)) |
14 | | pfxlen 14629 |
. . . . . . 7
β’ ((πΉ β Word dom
(iEdgβπΊ) β§ πΏ β
(0...(β―βπΉ)))
β (β―β(πΉ
prefix πΏ)) = πΏ) |
15 | 2, 14 | sylan 580 |
. . . . . 6
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (β―β(πΉ prefix πΏ)) = πΏ) |
16 | 15 | oveq2d 7421 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β
(0...(β―β(πΉ
prefix πΏ))) = (0...πΏ)) |
17 | 16 | feq2d 6700 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((π βΎ (0...πΏ)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ) β (π βΎ (0...πΏ)):(0...πΏ)βΆ(VtxβπΊ))) |
18 | 13, 17 | mpbird 256 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π βΎ (0...πΏ)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ)) |
19 | 6 | wlkpwrd 28863 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β π β Word (VtxβπΊ)) |
20 | | fzp1elp1 13550 |
. . . . . . . 8
β’ (πΏ β
(0...(β―βπΉ))
β (πΏ + 1) β
(0...((β―βπΉ) +
1))) |
21 | 20 | adantl 482 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (πΏ + 1) β (0...((β―βπΉ) + 1))) |
22 | | wlklenvp1 28864 |
. . . . . . . . 9
β’ (πΉ(WalksβπΊ)π β (β―βπ) = ((β―βπΉ) + 1)) |
23 | 22 | oveq2d 7421 |
. . . . . . . 8
β’ (πΉ(WalksβπΊ)π β (0...(β―βπ)) = (0...((β―βπΉ) + 1))) |
24 | 23 | adantr 481 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β
(0...(β―βπ)) =
(0...((β―βπΉ) +
1))) |
25 | 21, 24 | eleqtrrd 2836 |
. . . . . 6
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (πΏ + 1) β (0...(β―βπ))) |
26 | | pfxres 14625 |
. . . . . 6
β’ ((π β Word (VtxβπΊ) β§ (πΏ + 1) β (0...(β―βπ))) β (π prefix (πΏ + 1)) = (π βΎ (0..^(πΏ + 1)))) |
27 | 19, 25, 26 | syl2an2r 683 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π prefix (πΏ + 1)) = (π βΎ (0..^(πΏ + 1)))) |
28 | | elfzelz 13497 |
. . . . . . . 8
β’ (πΏ β
(0...(β―βπΉ))
β πΏ β
β€) |
29 | | fzval3 13697 |
. . . . . . . 8
β’ (πΏ β β€ β
(0...πΏ) = (0..^(πΏ + 1))) |
30 | 28, 29 | syl 17 |
. . . . . . 7
β’ (πΏ β
(0...(β―βπΉ))
β (0...πΏ) =
(0..^(πΏ +
1))) |
31 | 30 | adantl 482 |
. . . . . 6
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (0...πΏ) = (0..^(πΏ + 1))) |
32 | 31 | reseq2d 5979 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π βΎ (0...πΏ)) = (π βΎ (0..^(πΏ + 1)))) |
33 | 27, 32 | eqtr4d 2775 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π prefix (πΏ + 1)) = (π βΎ (0...πΏ))) |
34 | 33 | feq1d 6699 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((π prefix (πΏ + 1)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ) β (π βΎ (0...πΏ)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ))) |
35 | 18, 34 | mpbird 256 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π prefix (πΏ + 1)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ)) |
36 | 6, 1 | wlkprop 28857 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ₯ β (0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯))))) |
37 | 36 | simp3d 1144 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β βπ₯ β (0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯)))) |
38 | 37 | adantr 481 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β βπ₯ β
(0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯)))) |
39 | 38 | adantr 481 |
. . . 4
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β βπ₯ β (0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯)))) |
40 | 15 | oveq2d 7421 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β
(0..^(β―β(πΉ
prefix πΏ))) = (0..^πΏ)) |
41 | 40 | eleq2d 2819 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π β (0..^(β―β(πΉ prefix πΏ))) β π β (0..^πΏ))) |
42 | 33 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((π prefix (πΏ + 1))βπ) = ((π βΎ (0...πΏ))βπ)) |
43 | 42 | adantr 481 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((π prefix (πΏ + 1))βπ) = ((π βΎ (0...πΏ))βπ)) |
44 | | fzossfz 13647 |
. . . . . . . . . . . . . 14
β’
(0..^πΏ) β
(0...πΏ) |
45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (0..^πΏ) β (0...πΏ)) |
46 | 45 | sselda 3981 |
. . . . . . . . . . . 12
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β π β (0...πΏ)) |
47 | 46 | fvresd 6908 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((π βΎ (0...πΏ))βπ) = (πβπ)) |
48 | 43, 47 | eqtr2d 2773 |
. . . . . . . . . 10
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β (πβπ) = ((π prefix (πΏ + 1))βπ)) |
49 | 33 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((π prefix (πΏ + 1))β(π + 1)) = ((π βΎ (0...πΏ))β(π + 1))) |
50 | 49 | adantr 481 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((π prefix (πΏ + 1))β(π + 1)) = ((π βΎ (0...πΏ))β(π + 1))) |
51 | | fzofzp1 13725 |
. . . . . . . . . . . . 13
β’ (π β (0..^πΏ) β (π + 1) β (0...πΏ)) |
52 | 51 | adantl 482 |
. . . . . . . . . . . 12
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β (π + 1) β (0...πΏ)) |
53 | 52 | fvresd 6908 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((π βΎ (0...πΏ))β(π + 1)) = (πβ(π + 1))) |
54 | 50, 53 | eqtr2d 2773 |
. . . . . . . . . 10
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) |
55 | 48, 54 | jca 512 |
. . . . . . . . 9
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1)))) |
56 | 55 | ex 413 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π β (0..^πΏ) β ((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))))) |
57 | 41, 56 | sylbid 239 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π β (0..^(β―β(πΉ prefix πΏ))) β ((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))))) |
58 | 57 | imp 407 |
. . . . . 6
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β ((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1)))) |
59 | 3 | ancli 549 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ πΉ β Word dom (iEdgβπΊ))) |
60 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ πΉ β Word dom (iEdgβπΊ)) β§ π β (0..^πΏ)) β π β (0..^πΏ)) |
61 | 60 | fvresd 6908 |
. . . . . . . . . . . . 13
β’ ((((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ πΉ β Word dom (iEdgβπΊ)) β§ π β (0..^πΏ)) β ((πΉ βΎ (0..^πΏ))βπ) = (πΉβπ)) |
62 | 61 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ ((((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ πΉ β Word dom (iEdgβπΊ)) β§ π β (0..^πΏ)) β ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ)) = ((iEdgβπΊ)β(πΉβπ))) |
63 | 59, 62 | sylan 580 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ)) = ((iEdgβπΊ)β(πΉβπ))) |
64 | 63 | eqcomd 2738 |
. . . . . . . . . 10
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^πΏ)) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ))) |
65 | 64 | ex 413 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π β (0..^πΏ) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ)))) |
66 | 41, 65 | sylbid 239 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (π β (0..^(β―β(πΉ prefix πΏ))) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ)))) |
67 | 66 | imp 407 |
. . . . . . 7
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ))) |
68 | | simplr 767 |
. . . . . . . . . 10
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β πΏ β (0...(β―βπΉ))) |
69 | | pfxres 14625 |
. . . . . . . . . 10
β’ ((πΉ β Word dom
(iEdgβπΊ) β§ πΏ β
(0...(β―βπΉ)))
β (πΉ prefix πΏ) = (πΉ βΎ (0..^πΏ))) |
70 | 3, 68, 69 | syl2an2r 683 |
. . . . . . . . 9
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β (πΉ prefix πΏ) = (πΉ βΎ (0..^πΏ))) |
71 | 70 | fveq1d 6890 |
. . . . . . . 8
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β ((πΉ prefix πΏ)βπ) = ((πΉ βΎ (0..^πΏ))βπ)) |
72 | 71 | fveq2d 6892 |
. . . . . . 7
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^πΏ))βπ))) |
73 | 67, 72 | eqtr4d 2775 |
. . . . . 6
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) |
74 | 58, 73 | jca 512 |
. . . . 5
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β (((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))) |
75 | 9 | adantl 482 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (β―βπΉ) β
(β€β₯βπΏ)) |
76 | 15 | fveq2d 6892 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β
(β€β₯β(β―β(πΉ prefix πΏ))) = (β€β₯βπΏ)) |
77 | 75, 76 | eleqtrrd 2836 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (β―βπΉ) β
(β€β₯β(β―β(πΉ prefix πΏ)))) |
78 | | fzoss2 13656 |
. . . . . . . 8
β’
((β―βπΉ)
β (β€β₯β(β―β(πΉ prefix πΏ))) β (0..^(β―β(πΉ prefix πΏ))) β (0..^(β―βπΉ))) |
79 | 77, 78 | syl 17 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β
(0..^(β―β(πΉ
prefix πΏ))) β
(0..^(β―βπΉ))) |
80 | 79 | sselda 3981 |
. . . . . 6
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β π β (0..^(β―βπΉ))) |
81 | | wkslem1 28853 |
. . . . . . 7
β’ (π₯ = π β (if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯))) β if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) |
82 | 81 | rspcv 3608 |
. . . . . 6
β’ (π β
(0..^(β―βπΉ))
β (βπ₯ β
(0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯))) β if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) |
83 | 80, 82 | syl 17 |
. . . . 5
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β (βπ₯ β (0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯))) β if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) |
84 | | eqeq12 2749 |
. . . . . . . 8
β’ (((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β ((πβπ) = (πβ(π + 1)) β ((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)))) |
85 | 84 | adantr 481 |
. . . . . . 7
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β ((πβπ) = (πβ(π + 1)) β ((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)))) |
86 | | simpr 485 |
. . . . . . . 8
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) |
87 | | sneq 4637 |
. . . . . . . . . 10
β’ ((πβπ) = ((π prefix (πΏ + 1))βπ) β {(πβπ)} = {((π prefix (πΏ + 1))βπ)}) |
88 | 87 | adantr 481 |
. . . . . . . . 9
β’ (((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β {(πβπ)} = {((π prefix (πΏ + 1))βπ)}) |
89 | 88 | adantr 481 |
. . . . . . . 8
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β {(πβπ)} = {((π prefix (πΏ + 1))βπ)}) |
90 | 86, 89 | eqeq12d 2748 |
. . . . . . 7
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β (((iEdgβπΊ)β(πΉβπ)) = {(πβπ)} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)})) |
91 | | preq12 4738 |
. . . . . . . . 9
β’ (((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β {(πβπ), (πβ(π + 1))} = {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))}) |
92 | 91 | adantr 481 |
. . . . . . . 8
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β {(πβπ), (πβ(π + 1))} = {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))}) |
93 | 92, 86 | sseq12d 4014 |
. . . . . . 7
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β ({(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ)) β {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))) |
94 | 85, 90, 93 | ifpbi123d 1078 |
. . . . . 6
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β (if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))))) |
95 | 94 | biimpd 228 |
. . . . 5
β’ ((((πβπ) = ((π prefix (πΏ + 1))βπ) β§ (πβ(π + 1)) = ((π prefix (πΏ + 1))β(π + 1))) β§ ((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))) β (if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))))) |
96 | 74, 83, 95 | sylsyld 61 |
. . . 4
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β (βπ₯ β (0..^(β―βπΉ))if-((πβπ₯) = (πβ(π₯ + 1)), ((iEdgβπΊ)β(πΉβπ₯)) = {(πβπ₯)}, {(πβπ₯), (πβ(π₯ + 1))} β ((iEdgβπΊ)β(πΉβπ₯))) β if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ))))) |
97 | 39, 96 | mpd 15 |
. . 3
β’ (((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β§ π β (0..^(β―β(πΉ prefix πΏ)))) β if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))) |
98 | 97 | ralrimiva 3146 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β βπ β
(0..^(β―β(πΉ
prefix πΏ)))if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))) |
99 | | wlkv 28858 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
100 | 99 | simp1d 1142 |
. . . 4
β’ (πΉ(WalksβπΊ)π β πΊ β V) |
101 | 100 | adantr 481 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β πΊ β V) |
102 | 6, 1 | iswlkg 28859 |
. . 3
β’ (πΊ β V β ((πΉ prefix πΏ)(WalksβπΊ)(π prefix (πΏ + 1)) β ((πΉ prefix πΏ) β Word dom (iEdgβπΊ) β§ (π prefix (πΏ + 1)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ) β§ βπ β (0..^(β―β(πΉ prefix πΏ)))if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))))) |
103 | 101, 102 | syl 17 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β ((πΉ prefix πΏ)(WalksβπΊ)(π prefix (πΏ + 1)) β ((πΉ prefix πΏ) β Word dom (iEdgβπΊ) β§ (π prefix (πΏ + 1)):(0...(β―β(πΉ prefix πΏ)))βΆ(VtxβπΊ) β§ βπ β (0..^(β―β(πΉ prefix πΏ)))if-(((π prefix (πΏ + 1))βπ) = ((π prefix (πΏ + 1))β(π + 1)), ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)) = {((π prefix (πΏ + 1))βπ)}, {((π prefix (πΏ + 1))βπ), ((π prefix (πΏ + 1))β(π + 1))} β ((iEdgβπΊ)β((πΉ prefix πΏ)βπ)))))) |
104 | 5, 35, 98, 103 | mpbir3and 1342 |
1
β’ ((πΉ(WalksβπΊ)π β§ πΏ β (0...(β―βπΉ))) β (πΉ prefix πΏ)(WalksβπΊ)(π prefix (πΏ + 1))) |