Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxwlk Structured version   Visualization version   GIF version

Theorem pfxwlk 33085
Description: A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.)
Assertion
Ref Expression
pfxwlk ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))

Proof of Theorem pfxwlk
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
21wlkf 27981 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
32adantr 481 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 pfxcl 14390 . . 3 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
53, 4syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺))
6 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
76wlkp 27983 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
87adantr 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
9 elfzuz3 13253 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝐿))
10 fzss2 13296 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
119, 10syl 17 . . . . . 6 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
1211adantl 482 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆ (0...(♯‘𝐹)))
138, 12fssresd 6641 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))
14 pfxlen 14396 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
152, 14sylan 580 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿)
1615oveq2d 7291 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘(𝐹 prefix 𝐿))) = (0...𝐿))
1716feq2d 6586 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)))
1813, 17mpbird 256 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
196wlkpwrd 27984 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
20 fzp1elp1 13309 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
2120adantl 482 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1)))
22 wlklenvp1 27985 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
2322oveq2d 7291 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2423adantr 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1)))
2521, 24eleqtrrd 2842 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃)))
26 pfxres 14392 . . . . . 6 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
2719, 25, 26syl2an2r 682 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1))))
28 elfzelz 13256 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝐹)) → 𝐿 ∈ ℤ)
29 fzval3 13456 . . . . . . . 8 (𝐿 ∈ ℤ → (0...𝐿) = (0..^(𝐿 + 1)))
3028, 29syl 17 . . . . . . 7 (𝐿 ∈ (0...(♯‘𝐹)) → (0...𝐿) = (0..^(𝐿 + 1)))
3130adantl 482 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1)))
3231reseq2d 5891 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1))))
3327, 32eqtr4d 2781 . . . 4 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿)))
3433feq1d 6585 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)))
3518, 34mpbird 256 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))
366, 1wlkprop 27978 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥)))))
3736simp3d 1143 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3837adantr 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
3938adantr 481 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))))
4015oveq2d 7291 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) = (0..^𝐿))
4140eleq2d 2824 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿)))
4233fveq1d 6776 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
4342adantr 481 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘))
44 fzossfz 13406 . . . . . . . . . . . . . 14 (0..^𝐿) ⊆ (0...𝐿)
4544a1i 11 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿))
4645sselda 3921 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿))
4746fvresd 6794 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃𝑘))
4843, 47eqtr2d 2779 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘))
4933fveq1d 6776 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
5049adantr 481 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)))
51 fzofzp1 13484 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿))
5251adantl 482 . . . . . . . . . . . 12 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿))
5352fvresd 6794 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
5450, 53eqtr2d 2779 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))
5548, 54jca 512 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
5655ex 413 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5741, 56sylbid 239 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))))
5857imp 407 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
593ancli 549 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)))
60 simpr 485 . . . . . . . . . . . . . 14 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿))
6160fvresd 6794 . . . . . . . . . . . . 13 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹𝑘))
6261fveq2d 6778 . . . . . . . . . . . 12 ((((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6359, 62sylan 580 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
6463eqcomd 2744 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
6564ex 413 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6641, 65sylbid 239 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))))
6766imp 407 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
68 simplr 766 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹)))
69 pfxres 14392 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
703, 68, 69syl2an2r 682 . . . . . . . . 9 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿)))
7170fveq1d 6776 . . . . . . . 8 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘))
7271fveq2d 6778 . . . . . . 7 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))
7367, 72eqtr4d 2781 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
7458, 73jca 512 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
759adantl 482 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝐿))
7615fveq2d 6778 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (ℤ‘(♯‘(𝐹 prefix 𝐿))) = (ℤ𝐿))
7775, 76eleqtrrd 2842 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))))
78 fzoss2 13415 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
7977, 78syl 17 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹)))
8079sselda 3921 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹)))
81 wkslem1 27974 . . . . . . 7 (𝑥 = 𝑘 → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8281rspcv 3557 . . . . . 6 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8380, 82syl 17 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
84 eqeq12 2755 . . . . . . . 8 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
8584adantr 481 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))
86 simpr 485 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))
87 sneq 4571 . . . . . . . . . 10 ((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8887adantr 481 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
8988adantr 481 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)})
9086, 89eqeq12d 2754 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}))
91 preq12 4671 . . . . . . . . 9 (((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9291adantr 481 . . . . . . . 8 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))})
9392, 86sseq12d 3954 . . . . . . 7 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9485, 90, 93ifpbi123d 1077 . . . . . 6 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9594biimpd 228 . . . . 5 ((((𝑃𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9674, 83, 95sylsyld 61 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))
9739, 96mpd 15 . . 3 (((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
9897ralrimiva 3103 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))
99 wlkv 27979 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
10099simp1d 1141 . . . 4 (𝐹(Walks‘𝐺)𝑃𝐺 ∈ V)
101100adantr 481 . . 3 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V)
1026, 1iswlkg 27980 . . 3 (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
103101, 102syl 17 . 2 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))))
1045, 35, 98, 103mpbir3and 1341 1 ((𝐹(Walks‘𝐺)𝑃𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  if-wif 1060  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  {csn 4561  {cpr 4563   class class class wbr 5074  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   prefix cpfx 14383  Vtxcvtx 27366  iEdgciedg 27367  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354  df-pfx 14384  df-wlks 27966
This theorem is referenced by:  swrdwlk  33088
  Copyright terms: Public domain W3C validator