| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . 5
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 2 | 1 | wlkf 29633 | . . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) | 
| 3 | 2 | adantr 480 | . . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | 
| 4 |  | pfxcl 14716 | . . 3
⊢ (𝐹 ∈ Word dom
(iEdg‘𝐺) →
(𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺)) | 
| 5 | 3, 4 | syl 17 | . 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺)) | 
| 6 |  | eqid 2736 | . . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 7 | 6 | wlkp 29635 | . . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | 
| 8 | 7 | adantr 480 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | 
| 9 |  | elfzuz3 13562 | . . . . . . 7
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝐿)) | 
| 10 |  | fzss2 13605 | . . . . . . 7
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝐿) → (0...𝐿) ⊆ (0...(♯‘𝐹))) | 
| 11 | 9, 10 | syl 17 | . . . . . 6
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (0...𝐿) ⊆
(0...(♯‘𝐹))) | 
| 12 | 11 | adantl 481 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) ⊆
(0...(♯‘𝐹))) | 
| 13 | 8, 12 | fssresd 6774 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺)) | 
| 14 |  | pfxlen 14722 | . . . . . . 7
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝐿 ∈
(0...(♯‘𝐹)))
→ (♯‘(𝐹
prefix 𝐿)) = 𝐿) | 
| 15 | 2, 14 | sylan 580 | . . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝐿)) = 𝐿) | 
| 16 | 15 | oveq2d 7448 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0...(♯‘(𝐹
prefix 𝐿))) = (0...𝐿)) | 
| 17 | 16 | feq2d 6721 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...𝐿)⟶(Vtx‘𝐺))) | 
| 18 | 13, 17 | mpbird 257 | . . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)) | 
| 19 | 6 | wlkpwrd 29636 | . . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) | 
| 20 |  | fzp1elp1 13618 | . . . . . . . 8
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (𝐿 + 1) ∈
(0...((♯‘𝐹) +
1))) | 
| 21 | 20 | adantl 481 | . . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...((♯‘𝐹) + 1))) | 
| 22 |  | wlklenvp1 29637 | . . . . . . . . 9
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | 
| 23 | 22 | oveq2d 7448 | . . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (0...(♯‘𝑃)) = (0...((♯‘𝐹) + 1))) | 
| 24 | 23 | adantr 480 | . . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0...(♯‘𝑃)) =
(0...((♯‘𝐹) +
1))) | 
| 25 | 21, 24 | eleqtrrd 2843 | . . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐿 + 1) ∈ (0...(♯‘𝑃))) | 
| 26 |  | pfxres 14718 | . . . . . 6
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝐿 + 1) ∈ (0...(♯‘𝑃))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1)))) | 
| 27 | 19, 25, 26 | syl2an2r 685 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0..^(𝐿 + 1)))) | 
| 28 |  | elfzelz 13565 | . . . . . . . 8
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ 𝐿 ∈
ℤ) | 
| 29 |  | fzval3 13774 | . . . . . . . 8
⊢ (𝐿 ∈ ℤ →
(0...𝐿) = (0..^(𝐿 + 1))) | 
| 30 | 28, 29 | syl 17 | . . . . . . 7
⊢ (𝐿 ∈
(0...(♯‘𝐹))
→ (0...𝐿) =
(0..^(𝐿 +
1))) | 
| 31 | 30 | adantl 481 | . . . . . 6
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0...𝐿) = (0..^(𝐿 + 1))) | 
| 32 | 31 | reseq2d 5996 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 ↾ (0...𝐿)) = (𝑃 ↾ (0..^(𝐿 + 1)))) | 
| 33 | 27, 32 | eqtr4d 2779 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)) = (𝑃 ↾ (0...𝐿))) | 
| 34 | 33 | feq1d 6719 | . . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ↔ (𝑃 ↾ (0...𝐿)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺))) | 
| 35 | 18, 34 | mpbird 257 | . 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺)) | 
| 36 | 6, 1 | wlkprop 29630 | . . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))))) | 
| 37 | 36 | simp3d 1144 | . . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) | 
| 38 | 37 | adantr 480 | . . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑥 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) | 
| 39 | 38 | adantr 480 | . . . 4
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥)))) | 
| 40 | 15 | oveq2d 7448 | . . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0..^(♯‘(𝐹
prefix 𝐿))) = (0..^𝐿)) | 
| 41 | 40 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) ↔ 𝑘 ∈ (0..^𝐿))) | 
| 42 | 33 | fveq1d 6907 | . . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘)) | 
| 43 | 42 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 ↾ (0...𝐿))‘𝑘)) | 
| 44 |  | fzossfz 13719 | . . . . . . . . . . . . . 14
⊢
(0..^𝐿) ⊆
(0...𝐿) | 
| 45 | 44 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (0..^𝐿) ⊆ (0...𝐿)) | 
| 46 | 45 | sselda 3982 | . . . . . . . . . . . 12
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0...𝐿)) | 
| 47 | 46 | fvresd 6925 | . . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘𝑘) = (𝑃‘𝑘)) | 
| 48 | 43, 47 | eqtr2d 2777 | . . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘)) | 
| 49 | 33 | fveq1d 6907 | . . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1))) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)) = ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1))) | 
| 51 |  | fzofzp1 13804 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝐿) → (𝑘 + 1) ∈ (0...𝐿)) | 
| 52 | 51 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑘 + 1) ∈ (0...𝐿)) | 
| 53 | 52 | fvresd 6925 | . . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃 ↾ (0...𝐿))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) | 
| 54 | 50, 53 | eqtr2d 2777 | . . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) | 
| 55 | 48, 54 | jca 511 | . . . . . . . . 9
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) | 
| 56 | 55 | ex 412 | . . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))) | 
| 57 | 41, 56 | sylbid 240 | . . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))))) | 
| 58 | 57 | imp 406 | . . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) | 
| 59 | 3 | ancli 548 | . . . . . . . . . . . 12
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺))) | 
| 60 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → 𝑘 ∈ (0..^𝐿)) | 
| 61 | 60 | fvresd 6925 | . . . . . . . . . . . . 13
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((𝐹 ↾ (0..^𝐿))‘𝑘) = (𝐹‘𝑘)) | 
| 62 | 61 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) | 
| 63 | 59, 62 | sylan 580 | . . . . . . . . . . 11
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) | 
| 64 | 63 | eqcomd 2742 | . . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^𝐿)) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) | 
| 65 | 64 | ex 412 | . . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^𝐿) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))) | 
| 66 | 41, 65 | sylbid 240 | . . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘)))) | 
| 67 | 66 | imp 406 | . . . . . . 7
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) | 
| 68 |  | simplr 768 | . . . . . . . . . 10
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝐿 ∈ (0...(♯‘𝐹))) | 
| 69 |  | pfxres 14718 | . . . . . . . . . 10
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝐿 ∈
(0...(♯‘𝐹)))
→ (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿))) | 
| 70 | 3, 68, 69 | syl2an2r 685 | . . . . . . . . 9
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (𝐹 prefix 𝐿) = (𝐹 ↾ (0..^𝐿))) | 
| 71 | 70 | fveq1d 6907 | . . . . . . . 8
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((𝐹 prefix 𝐿)‘𝑘) = ((𝐹 ↾ (0..^𝐿))‘𝑘)) | 
| 72 | 71 | fveq2d 6909 | . . . . . . 7
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^𝐿))‘𝑘))) | 
| 73 | 67, 72 | eqtr4d 2779 | . . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) | 
| 74 | 58, 73 | jca 511 | . . . . 5
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) | 
| 75 | 9 | adantl 481 | . . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘𝐿)) | 
| 76 | 15 | fveq2d 6909 | . . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(ℤ≥‘(♯‘(𝐹 prefix 𝐿))) = (ℤ≥‘𝐿)) | 
| 77 | 75, 76 | eleqtrrd 2843 | . . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘(♯‘(𝐹 prefix 𝐿)))) | 
| 78 |  | fzoss2 13728 | . . . . . . . 8
⊢
((♯‘𝐹)
∈ (ℤ≥‘(♯‘(𝐹 prefix 𝐿))) → (0..^(♯‘(𝐹 prefix 𝐿))) ⊆ (0..^(♯‘𝐹))) | 
| 79 | 77, 78 | syl 17 | . . . . . . 7
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) →
(0..^(♯‘(𝐹
prefix 𝐿))) ⊆
(0..^(♯‘𝐹))) | 
| 80 | 79 | sselda 3982 | . . . . . 6
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → 𝑘 ∈ (0..^(♯‘𝐹))) | 
| 81 |  | wkslem1 29626 | . . . . . . 7
⊢ (𝑥 = 𝑘 → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) | 
| 82 | 81 | rspcv 3617 | . . . . . 6
⊢ (𝑘 ∈
(0..^(♯‘𝐹))
→ (∀𝑥 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) | 
| 83 | 80, 82 | syl 17 | . . . . 5
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) | 
| 84 |  | eqeq12 2753 | . . . . . . . 8
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) | 
| 85 | 84 | adantr 480 | . . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)))) | 
| 86 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) | 
| 87 |  | sneq 4635 | . . . . . . . . . 10
⊢ ((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) | 
| 88 | 87 | adantr 480 | . . . . . . . . 9
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) | 
| 89 | 88 | adantr 480 | . . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃‘𝑘)} = {((𝑃 prefix (𝐿 + 1))‘𝑘)}) | 
| 90 | 86, 89 | eqeq12d 2752 | . . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)})) | 
| 91 |  | preq12 4734 | . . . . . . . . 9
⊢ (((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))}) | 
| 92 | 91 | adantr 480 | . . . . . . . 8
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))}) | 
| 93 | 92, 86 | sseq12d 4016 | . . . . . . 7
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)) ↔ {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) | 
| 94 | 85, 90, 93 | ifpbi123d 1078 | . . . . . 6
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) | 
| 95 | 94 | biimpd 229 | . . . . 5
⊢ ((((𝑃‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘𝑘) ∧ (𝑃‘(𝑘 + 1)) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))) ∧ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) | 
| 96 | 74, 83, 95 | sylsyld 61 | . . . 4
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑥))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘))))) | 
| 97 | 39, 96 | mpd 15 | . . 3
⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) ∧ 𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))) → if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) | 
| 98 | 97 | ralrimiva 3145 | . 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ∀𝑘 ∈
(0..^(♯‘(𝐹
prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))) | 
| 99 |  | wlkv 29631 | . . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | 
| 100 | 99 | simp1d 1142 | . . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐺 ∈ V) | 
| 101 | 100 | adantr 480 | . . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → 𝐺 ∈ V) | 
| 102 | 6, 1 | iswlkg 29632 | . . 3
⊢ (𝐺 ∈ V → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))) | 
| 103 | 101, 102 | syl 17 | . 2
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → ((𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1)) ↔ ((𝐹 prefix 𝐿) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 prefix (𝐿 + 1)):(0...(♯‘(𝐹 prefix 𝐿)))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 prefix 𝐿)))if-(((𝑃 prefix (𝐿 + 1))‘𝑘) = ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)) = {((𝑃 prefix (𝐿 + 1))‘𝑘)}, {((𝑃 prefix (𝐿 + 1))‘𝑘), ((𝑃 prefix (𝐿 + 1))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 prefix 𝐿)‘𝑘)))))) | 
| 104 | 5, 35, 98, 103 | mpbir3and 1342 | 1
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1))) |