MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redwlk Structured version   Visualization version   GIF version

Theorem redwlk 27942
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
redwlk ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))

Proof of Theorem redwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27882 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27880 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 wrdred1 14191 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺))
65a1i 11 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺)))
73wlkf 27884 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
8 redwlklem 27941 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))
983exp 1117 . . . . . . . . . 10 (𝐹 ∈ Word dom (iEdg‘𝐺) → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
107, 9syl 17 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
1110imp 406 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺)))
12 wlkcl 27885 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 wrdred1hash 14192 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
147, 13sylan 579 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
15 nn0z 12273 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
16 fzossrbm1 13344 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
18 ssralv 3983 . . . . . . . . . . . . 13 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1917, 18syl 17 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
2017sselda 3917 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^(♯‘𝐹)))
2120fvresd 6776 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2221eqcomd 2744 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘))
23 fzo0ss1 13345 . . . . . . . . . . . . . . . . . . 19 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
24 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^((♯‘𝐹) − 1)))
2515adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (♯‘𝐹) ∈ ℤ)
26 1zzd 12281 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 1 ∈ ℤ)
27 fzoaddel2 13371 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0..^((♯‘𝐹) − 1)) ∧ (♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2824, 25, 26, 27syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2923, 28sselid 3915 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (0..^(♯‘𝐹)))
3029fvresd 6776 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3130eqcomd 2744 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)))
3222, 31eqeq12d 2754 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))))
33 fvres 6775 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^((♯‘𝐹) − 1)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3433adantl 481 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3534eqcomd 2744 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑘) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))
3635fveq2d 6760 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))
3722sneqd 4570 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘)} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)})
3836, 37eqeq12d 2754 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}))
3922, 31preq12d 4674 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))})
4039, 36sseq12d 3950 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))
4132, 38, 40ifpbi123d 1076 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4241biimpd 228 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4342ralimdva 3102 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4419, 43syld 47 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4544adantr 480 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
46 oveq2 7263 . . . . . . . . . . . . 13 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0..^((♯‘𝐹) − 1)))
4746eqcomd 2744 . . . . . . . . . . . 12 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^((♯‘𝐹) − 1)) = (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))))
4847raleqdv 3339 . . . . . . . . . . 11 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4948adantl 481 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5045, 49sylibd 238 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5112, 14, 50syl2an2r 681 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
526, 11, 513anim123d 1441 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5352imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
54 id 22 . . . . . . 7 (𝐺 ∈ V → 𝐺 ∈ V)
55 resexg 5926 . . . . . . 7 (𝐹 ∈ V → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V)
56 resexg 5926 . . . . . . 7 (𝑃 ∈ V → (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V)
572, 3iswlk 27880 . . . . . . . 8 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))) ↔ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5857bicomd 222 . . . . . . 7 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
5954, 55, 56, 58syl3an 1158 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6053, 59syl5ib 243 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6160expcomd 416 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
624, 61sylbid 239 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
631, 62mpcom 38 . 2 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6463anabsi5 665 1 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator