MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redwlk Structured version   Visualization version   GIF version

Theorem redwlk 28328
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
redwlk ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))

Proof of Theorem redwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 28268 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2736 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 28266 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 wrdred1 14363 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺))
65a1i 11 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺)))
73wlkf 28270 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
8 redwlklem 28327 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))
983exp 1118 . . . . . . . . . 10 (𝐹 ∈ Word dom (iEdg‘𝐺) → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
107, 9syl 17 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
1110imp 407 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺)))
12 wlkcl 28271 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 wrdred1hash 14364 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
147, 13sylan 580 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
15 nn0z 12444 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
16 fzossrbm1 13517 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
18 ssralv 3998 . . . . . . . . . . . . 13 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1917, 18syl 17 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
2017sselda 3932 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^(♯‘𝐹)))
2120fvresd 6845 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2221eqcomd 2742 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘))
23 fzo0ss1 13518 . . . . . . . . . . . . . . . . . . 19 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
24 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^((♯‘𝐹) − 1)))
2515adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (♯‘𝐹) ∈ ℤ)
26 1zzd 12452 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 1 ∈ ℤ)
27 fzoaddel2 13544 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0..^((♯‘𝐹) − 1)) ∧ (♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2824, 25, 26, 27syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2923, 28sselid 3930 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (0..^(♯‘𝐹)))
3029fvresd 6845 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3130eqcomd 2742 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)))
3222, 31eqeq12d 2752 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))))
33 fvres 6844 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^((♯‘𝐹) − 1)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3433adantl 482 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3534eqcomd 2742 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑘) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))
3635fveq2d 6829 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))
3722sneqd 4585 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘)} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)})
3836, 37eqeq12d 2752 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}))
3922, 31preq12d 4689 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))})
4039, 36sseq12d 3965 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))
4132, 38, 40ifpbi123d 1077 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4241biimpd 228 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4342ralimdva 3160 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4419, 43syld 47 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4544adantr 481 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
46 oveq2 7345 . . . . . . . . . . . . 13 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0..^((♯‘𝐹) − 1)))
4746eqcomd 2742 . . . . . . . . . . . 12 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^((♯‘𝐹) − 1)) = (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))))
4847raleqdv 3309 . . . . . . . . . . 11 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4948adantl 482 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5045, 49sylibd 238 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5112, 14, 50syl2an2r 682 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
526, 11, 513anim123d 1442 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5352imp 407 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
54 id 22 . . . . . . 7 (𝐺 ∈ V → 𝐺 ∈ V)
55 resexg 5969 . . . . . . 7 (𝐹 ∈ V → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V)
56 resexg 5969 . . . . . . 7 (𝑃 ∈ V → (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V)
572, 3iswlk 28266 . . . . . . . 8 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))) ↔ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5857bicomd 222 . . . . . . 7 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
5954, 55, 56, 58syl3an 1159 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6053, 59syl5ib 243 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6160expcomd 417 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
624, 61sylbid 239 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
631, 62mpcom 38 . 2 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6463anabsi5 666 1 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  if-wif 1060  w3a 1086   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  wss 3898  {csn 4573  {cpr 4575   class class class wbr 5092  dom cdm 5620  cres 5622  wf 6475  cfv 6479  (class class class)co 7337  0cc0 10972  1c1 10973   + caddc 10975  cle 11111  cmin 11306  0cn0 12334  cz 12420  ...cfz 13340  ..^cfzo 13483  chash 14145  Word cword 14317  Vtxcvtx 27655  iEdgciedg 27656  Walkscwlks 28252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-wlks 28255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator