Step | Hyp | Ref
| Expression |
1 | | wlkv 28858 |
. . 3
β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
2 | | eqid 2732 |
. . . . 5
β’
(VtxβπΊ) =
(VtxβπΊ) |
3 | | eqid 2732 |
. . . . 5
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
4 | 2, 3 | iswlk 28856 |
. . . 4
β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ)))))) |
5 | | wrdred1 14506 |
. . . . . . . . 9
β’ (πΉ β Word dom
(iEdgβπΊ) β
(πΉ βΎ
(0..^((β―βπΉ)
β 1))) β Word dom (iEdgβπΊ)) |
6 | 5 | a1i 11 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (πΉ β Word dom (iEdgβπΊ) β (πΉ βΎ (0..^((β―βπΉ) β 1))) β Word dom
(iEdgβπΊ))) |
7 | 3 | wlkf 28860 |
. . . . . . . . . 10
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
8 | | redwlklem 28917 |
. . . . . . . . . . 11
β’ ((πΉ β Word dom
(iEdgβπΊ) β§ 1 β€
(β―βπΉ) β§
π:(0...(β―βπΉ))βΆ(VtxβπΊ)) β (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ)) |
9 | 8 | 3exp 1119 |
. . . . . . . . . 10
β’ (πΉ β Word dom
(iEdgβπΊ) β (1
β€ (β―βπΉ)
β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ)))) |
10 | 7, 9 | syl 17 |
. . . . . . . . 9
β’ (πΉ(WalksβπΊ)π β (1 β€ (β―βπΉ) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ)))) |
11 | 10 | imp 407 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ))) |
12 | | wlkcl 28861 |
. . . . . . . . 9
β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β
β0) |
13 | | wrdred1hash 14507 |
. . . . . . . . . 10
β’ ((πΉ β Word dom
(iEdgβπΊ) β§ 1 β€
(β―βπΉ)) β
(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))) = ((β―βπΉ) β 1)) |
14 | 7, 13 | sylan 580 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))) = ((β―βπΉ) β 1)) |
15 | | nn0z 12579 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ)
β β0 β (β―βπΉ) β β€) |
16 | | fzossrbm1 13657 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ)
β β€ β (0..^((β―βπΉ) β 1)) β
(0..^(β―βπΉ))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . 13
β’
((β―βπΉ)
β β0 β (0..^((β―βπΉ) β 1)) β
(0..^(β―βπΉ))) |
18 | | ssralv 4049 |
. . . . . . . . . . . . 13
β’
((0..^((β―βπΉ) β 1)) β
(0..^(β―βπΉ))
β (βπ β
(0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^((β―βπΉ) β 1))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . 12
β’
((β―βπΉ)
β β0 β (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^((β―βπΉ) β 1))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) |
20 | 17 | sselda 3981 |
. . . . . . . . . . . . . . . . . 18
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β π β
(0..^(β―βπΉ))) |
21 | 20 | fvresd 6908 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β ((π βΎ
(0..^(β―βπΉ)))βπ) = (πβπ)) |
22 | 21 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β (πβπ) = ((π βΎ (0..^(β―βπΉ)))βπ)) |
23 | | fzo0ss1 13658 |
. . . . . . . . . . . . . . . . . . 19
β’
(1..^(β―βπΉ)) β (0..^(β―βπΉ)) |
24 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β π β
(0..^((β―βπΉ)
β 1))) |
25 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β
(β―βπΉ) β
β€) |
26 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β 1 β
β€) |
27 | | fzoaddel2 13684 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β
(0..^((β―βπΉ)
β 1)) β§ (β―βπΉ) β β€ β§ 1 β β€)
β (π + 1) β
(1..^(β―βπΉ))) |
28 | 24, 25, 26, 27 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β (π + 1) β
(1..^(β―βπΉ))) |
29 | 23, 28 | sselid 3979 |
. . . . . . . . . . . . . . . . . 18
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β (π + 1) β
(0..^(β―βπΉ))) |
30 | 29 | fvresd 6908 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β ((π βΎ
(0..^(β―βπΉ)))β(π + 1)) = (πβ(π + 1))) |
31 | 30 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β (πβ(π + 1)) = ((π βΎ (0..^(β―βπΉ)))β(π + 1))) |
32 | 22, 31 | eqeq12d 2748 |
. . . . . . . . . . . . . . 15
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β ((πβπ) = (πβ(π + 1)) β ((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)))) |
33 | | fvres 6907 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β
(0..^((β―βπΉ)
β 1)) β ((πΉ
βΎ (0..^((β―βπΉ) β 1)))βπ) = (πΉβπ)) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β ((πΉ βΎ
(0..^((β―βπΉ)
β 1)))βπ) =
(πΉβπ)) |
35 | 34 | eqcomd 2738 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β (πΉβπ) = ((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) |
36 | 35 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β
((iEdgβπΊ)β(πΉβπ)) = ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))) |
37 | 22 | sneqd 4639 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β {(πβπ)} = {((π βΎ (0..^(β―βπΉ)))βπ)}) |
38 | 36, 37 | eqeq12d 2748 |
. . . . . . . . . . . . . . 15
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β
(((iEdgβπΊ)β(πΉβπ)) = {(πβπ)} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)})) |
39 | 22, 31 | preq12d 4744 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β {(πβπ), (πβ(π + 1))} = {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))}) |
40 | 39, 36 | sseq12d 4014 |
. . . . . . . . . . . . . . 15
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β ({(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ)) β {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)))) |
41 | 32, 38, 40 | ifpbi123d 1078 |
. . . . . . . . . . . . . 14
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β
(if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
42 | 41 | biimpd 228 |
. . . . . . . . . . . . 13
β’
(((β―βπΉ)
β β0 β§ π β (0..^((β―βπΉ) β 1))) β
(if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
43 | 42 | ralimdva 3167 |
. . . . . . . . . . . 12
β’
((β―βπΉ)
β β0 β (βπ β (0..^((β―βπΉ) β 1))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^((β―βπΉ) β 1))if-(((π βΎ
(0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
44 | 19, 43 | syld 47 |
. . . . . . . . . . 11
β’
((β―βπΉ)
β β0 β (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^((β―βπΉ) β 1))if-(((π βΎ
(0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
45 | 44 | adantr 481 |
. . . . . . . . . 10
β’
(((β―βπΉ)
β β0 β§ (β―β(πΉ βΎ (0..^((β―βπΉ) β 1)))) =
((β―βπΉ) β
1)) β (βπ
β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^((β―βπΉ) β 1))if-(((π βΎ
(0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
46 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’
((β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))) = ((β―βπΉ) β 1) β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1))))) =
(0..^((β―βπΉ)
β 1))) |
47 | 46 | eqcomd 2738 |
. . . . . . . . . . . 12
β’
((β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))) = ((β―βπΉ) β 1) β
(0..^((β―βπΉ)
β 1)) = (0..^(β―β(πΉ βΎ (0..^((β―βπΉ) β
1)))))) |
48 | 47 | raleqdv 3325 |
. . . . . . . . . . 11
β’
((β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))) = ((β―βπΉ) β 1) β
(βπ β
(0..^((β―βπΉ)
β 1))if-(((π βΎ
(0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))) β βπ β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
49 | 48 | adantl 482 |
. . . . . . . . . 10
β’
(((β―βπΉ)
β β0 β§ (β―β(πΉ βΎ (0..^((β―βπΉ) β 1)))) =
((β―βπΉ) β
1)) β (βπ
β (0..^((β―βπΉ) β 1))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))) β βπ β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
50 | 45, 49 | sylibd 238 |
. . . . . . . . 9
β’
(((β―βπΉ)
β β0 β§ (β―β(πΉ βΎ (0..^((β―βπΉ) β 1)))) =
((β―βπΉ) β
1)) β (βπ
β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))if-(((π
βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
51 | 12, 14, 50 | syl2an2r 683 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (βπ β
(0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))) β βπ β (0..^(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))if-(((π
βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
52 | 6, 11, 51 | 3anim123d 1443 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β ((πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ)))) β ((πΉ βΎ (0..^((β―βπΉ) β 1))) β Word dom
(iEdgβπΊ) β§ (π βΎ
(0..^(β―βπΉ))):(0...(β―β(πΉ βΎ (0..^((β―βπΉ) β
1)))))βΆ(VtxβπΊ)
β§ βπ β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)))))) |
53 | 52 | imp 407 |
. . . . . 6
β’ (((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) β ((πΉ βΎ (0..^((β―βπΉ) β 1))) β Word dom
(iEdgβπΊ) β§ (π βΎ
(0..^(β―βπΉ))):(0...(β―β(πΉ βΎ (0..^((β―βπΉ) β
1)))))βΆ(VtxβπΊ)
β§ βπ β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ))))) |
54 | | id 22 |
. . . . . . 7
β’ (πΊ β V β πΊ β V) |
55 | | resexg 6025 |
. . . . . . 7
β’ (πΉ β V β (πΉ βΎ
(0..^((β―βπΉ)
β 1))) β V) |
56 | | resexg 6025 |
. . . . . . 7
β’ (π β V β (π βΎ
(0..^(β―βπΉ)))
β V) |
57 | 2, 3 | iswlk 28856 |
. . . . . . . 8
β’ ((πΊ β V β§ (πΉ βΎ
(0..^((β―βπΉ)
β 1))) β V β§ (π βΎ (0..^(β―βπΉ))) β V) β ((πΉ βΎ
(0..^((β―βπΉ)
β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ))) β ((πΉ βΎ (0..^((β―βπΉ) β 1))) β Word dom
(iEdgβπΊ) β§ (π βΎ
(0..^(β―βπΉ))):(0...(β―β(πΉ βΎ (0..^((β―βπΉ) β
1)))))βΆ(VtxβπΊ)
β§ βπ β
(0..^(β―β(πΉ
βΎ (0..^((β―βπΉ) β 1)))))if-(((π βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)))))) |
58 | 57 | bicomd 222 |
. . . . . . 7
β’ ((πΊ β V β§ (πΉ βΎ
(0..^((β―βπΉ)
β 1))) β V β§ (π βΎ (0..^(β―βπΉ))) β V) β (((πΉ βΎ
(0..^((β―βπΉ)
β 1))) β Word dom (iEdgβπΊ) β§ (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ) β§ βπ β (0..^(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))if-(((π
βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)))) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ))))) |
59 | 54, 55, 56, 58 | syl3an 1160 |
. . . . . 6
β’ ((πΊ β V β§ πΉ β V β§ π β V) β (((πΉ βΎ
(0..^((β―βπΉ)
β 1))) β Word dom (iEdgβπΊ) β§ (π βΎ (0..^(β―βπΉ))):(0...(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))βΆ(VtxβπΊ) β§ βπ β (0..^(β―β(πΉ βΎ
(0..^((β―βπΉ)
β 1)))))if-(((π
βΎ (0..^(β―βπΉ)))βπ) = ((π βΎ (0..^(β―βπΉ)))β(π + 1)), ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)) = {((π βΎ (0..^(β―βπΉ)))βπ)}, {((π βΎ (0..^(β―βπΉ)))βπ), ((π βΎ (0..^(β―βπΉ)))β(π + 1))} β ((iEdgβπΊ)β((πΉ βΎ (0..^((β―βπΉ) β 1)))βπ)))) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ))))) |
60 | 53, 59 | imbitrid 243 |
. . . . 5
β’ ((πΊ β V β§ πΉ β V β§ π β V) β (((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ))))) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ))))) |
61 | 60 | expcomd 417 |
. . . 4
β’ ((πΊ β V β§ πΉ β V β§ π β V) β ((πΉ β Word dom
(iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπΊ)β(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πΉβπ)))) β ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ)))))) |
62 | 4, 61 | sylbid 239 |
. . 3
β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ(WalksβπΊ)π β ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ)))))) |
63 | 1, 62 | mpcom 38 |
. 2
β’ (πΉ(WalksβπΊ)π β ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ))))) |
64 | 63 | anabsi5 667 |
1
β’ ((πΉ(WalksβπΊ)π β§ 1 β€ (β―βπΉ)) β (πΉ βΎ (0..^((β―βπΉ) β 1)))(WalksβπΊ)(π βΎ (0..^(β―βπΉ)))) |