MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redwlk Structured version   Visualization version   GIF version

Theorem redwlk 27462
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
redwlk ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))

Proof of Theorem redwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27402 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2798 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2798 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27400 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 wrdred1 13903 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺))
65a1i 11 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺)))
73wlkf 27404 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
8 redwlklem 27461 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))
983exp 1116 . . . . . . . . . 10 (𝐹 ∈ Word dom (iEdg‘𝐺) → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
107, 9syl 17 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
1110imp 410 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺)))
12 wlkcl 27405 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 wrdred1hash 13904 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
147, 13sylan 583 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
15 nn0z 11993 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
16 fzossrbm1 13061 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
18 ssralv 3981 . . . . . . . . . . . . 13 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1917, 18syl 17 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
2017sselda 3915 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^(♯‘𝐹)))
2120fvresd 6665 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2221eqcomd 2804 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘))
23 fzo0ss1 13062 . . . . . . . . . . . . . . . . . . 19 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
24 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^((♯‘𝐹) − 1)))
2515adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (♯‘𝐹) ∈ ℤ)
26 1zzd 12001 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 1 ∈ ℤ)
27 fzoaddel2 13088 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0..^((♯‘𝐹) − 1)) ∧ (♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2824, 25, 26, 27syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2923, 28sseldi 3913 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (0..^(♯‘𝐹)))
3029fvresd 6665 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3130eqcomd 2804 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)))
3222, 31eqeq12d 2814 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))))
33 fvres 6664 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^((♯‘𝐹) − 1)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3433adantl 485 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3534eqcomd 2804 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑘) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))
3635fveq2d 6649 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))
3722sneqd 4537 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘)} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)})
3836, 37eqeq12d 2814 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}))
3922, 31preq12d 4637 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))})
4039, 36sseq12d 3948 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))
4132, 38, 40ifpbi123d 1075 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4241biimpd 232 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4342ralimdva 3144 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4419, 43syld 47 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4544adantr 484 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
46 oveq2 7143 . . . . . . . . . . . . 13 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0..^((♯‘𝐹) − 1)))
4746eqcomd 2804 . . . . . . . . . . . 12 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^((♯‘𝐹) − 1)) = (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))))
4847raleqdv 3364 . . . . . . . . . . 11 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4948adantl 485 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5045, 49sylibd 242 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5112, 14, 50syl2an2r 684 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
526, 11, 513anim123d 1440 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5352imp 410 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
54 id 22 . . . . . . 7 (𝐺 ∈ V → 𝐺 ∈ V)
55 resexg 5864 . . . . . . 7 (𝐹 ∈ V → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V)
56 resexg 5864 . . . . . . 7 (𝑃 ∈ V → (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V)
572, 3iswlk 27400 . . . . . . . 8 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))) ↔ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5857bicomd 226 . . . . . . 7 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
5954, 55, 56, 58syl3an 1157 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6053, 59syl5ib 247 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6160expcomd 420 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
624, 61sylbid 243 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
631, 62mpcom 38 . 2 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6463anabsi5 668 1 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  if-wif 1058  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {csn 4525  {cpr 4527   class class class wbr 5030  dom cdm 5519  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  iEdgciedg 26790  Walkscwlks 27386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wlks 27389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator