MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redwlk Structured version   Visualization version   GIF version

Theorem redwlk 29634
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
redwlk ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))

Proof of Theorem redwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 29576 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 29574 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 wrdred1 14485 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺))
65a1i 11 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺)))
73wlkf 29578 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
8 redwlklem 29633 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))
983exp 1119 . . . . . . . . . 10 (𝐹 ∈ Word dom (iEdg‘𝐺) → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
107, 9syl 17 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
1110imp 406 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺)))
12 wlkcl 29579 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 wrdred1hash 14486 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
147, 13sylan 580 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
15 nn0z 12514 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
16 fzossrbm1 13609 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
18 ssralv 4006 . . . . . . . . . . . . 13 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1917, 18syl 17 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
2017sselda 3937 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^(♯‘𝐹)))
2120fvresd 6846 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2221eqcomd 2735 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘))
23 fzo0ss1 13610 . . . . . . . . . . . . . . . . . . 19 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
24 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^((♯‘𝐹) − 1)))
2515adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (♯‘𝐹) ∈ ℤ)
26 1zzd 12524 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 1 ∈ ℤ)
27 fzoaddel2 13641 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0..^((♯‘𝐹) − 1)) ∧ (♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2923, 28sselid 3935 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (0..^(♯‘𝐹)))
3029fvresd 6846 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3130eqcomd 2735 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)))
3222, 31eqeq12d 2745 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))))
33 fvres 6845 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^((♯‘𝐹) − 1)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3433adantl 481 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3534eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑘) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))
3635fveq2d 6830 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))
3722sneqd 4591 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘)} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)})
3836, 37eqeq12d 2745 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}))
3922, 31preq12d 4695 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))})
4039, 36sseq12d 3971 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))
4132, 38, 40ifpbi123d 1078 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4241biimpd 229 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4342ralimdva 3141 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4419, 43syld 47 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4544adantr 480 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
46 oveq2 7361 . . . . . . . . . . . . 13 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0..^((♯‘𝐹) − 1)))
4746eqcomd 2735 . . . . . . . . . . . 12 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^((♯‘𝐹) − 1)) = (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))))
4847raleqdv 3290 . . . . . . . . . . 11 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4948adantl 481 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5045, 49sylibd 239 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5112, 14, 50syl2an2r 685 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
526, 11, 513anim123d 1445 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5352imp 406 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
54 id 22 . . . . . . 7 (𝐺 ∈ V → 𝐺 ∈ V)
55 resexg 5982 . . . . . . 7 (𝐹 ∈ V → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V)
56 resexg 5982 . . . . . . 7 (𝑃 ∈ V → (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V)
572, 3iswlk 29574 . . . . . . . 8 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))) ↔ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5857bicomd 223 . . . . . . 7 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
5954, 55, 56, 58syl3an 1160 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6053, 59imbitrid 244 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6160expcomd 416 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
624, 61sylbid 240 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
631, 62mpcom 38 . 2 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6463anabsi5 669 1 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {csn 4579  {cpr 4581   class class class wbr 5095  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cmin 11365  0cn0 12402  cz 12489  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  Vtxcvtx 28959  iEdgciedg 28960  Walkscwlks 29560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-wlks 29563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator