MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpr Structured version   Visualization version   GIF version

Theorem infpr 9192
Description: The infimum of a pair. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
infpr ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))

Proof of Theorem infpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → 𝑅 Or 𝐴)
2 ifcl 4501 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝐴)
323adant1 1128 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝐴)
4 ifpr 4624 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
543adant1 1128 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
6 breq2 5074 . . . . . 6 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐵𝑅𝐵𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
76notbid 317 . . . . 5 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
8 breq2 5074 . . . . . 6 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐵𝑅𝐶𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
98notbid 317 . . . . 5 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐶 ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
10 sonr 5517 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
11103adant3 1130 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅𝐵)
1211adantr 480 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
13 simpr 484 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐶)
147, 9, 12, 13ifbothda 4494 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
15 breq2 5074 . . . . . 6 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐶𝑅𝐵𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
1615notbid 317 . . . . 5 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐵 ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
17 breq2 5074 . . . . . 6 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐶𝑅𝐶𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
1817notbid 317 . . . . 5 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐶 ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
19 so2nr 5520 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
20193impb 1113 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
21 imnan 399 . . . . . . 7 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
2220, 21sylibr 233 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
2322imp 406 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐶𝑅𝐵)
24 sonr 5517 . . . . . . 7 ((𝑅 Or 𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
25243adant2 1129 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
2625adantr 480 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐵𝑅𝐶) → ¬ 𝐶𝑅𝐶)
2716, 18, 23, 26ifbothda 4494 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
28 breq1 5073 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
2928notbid 317 . . . . . 6 (𝑦 = 𝐵 → (¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
30 breq1 5073 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
3130notbid 317 . . . . . 6 (𝑦 = 𝐶 → (¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
3229, 31ralprg 4627 . . . . 5 ((𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))))
33323adant1 1128 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))))
3414, 27, 33mpbir2and 709 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
3534r19.21bi 3132 . 2 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝑦 ∈ {𝐵, 𝐶}) → ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
361, 3, 5, 35infmin 9183 1 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ifcif 4456  {cpr 4560   class class class wbr 5070   Or wor 5493  infcinf 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-cnv 5588  df-iota 6376  df-riota 7212  df-sup 9131  df-inf 9132
This theorem is referenced by:  infsupprpr  9193  infsn  9194  liminf10ex  43205  prproropf1olem2  44844  prproropf1olem3  44845  prproropf1olem4  44846
  Copyright terms: Public domain W3C validator