MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvvcl Structured version   Visualization version   GIF version

Theorem uvcvvcl 20994
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvvcl (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })

Proof of Theorem uvcvvcl
StepHypRef Expression
1 uvcfval.u . . 3 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . 3 1 = (1r𝑅)
3 uvcfval.z . . 3 0 = (0g𝑅)
41, 2, 3uvcvval 20993 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
52fvexi 6788 . . . 4 1 ∈ V
63fvexi 6788 . . . 4 0 ∈ V
7 ifpr 4627 . . . 4 (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 })
85, 6, 7mp2an 689 . . 3 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }
9 prcom 4668 . . 3 { 1 , 0 } = { 0 , 1 }
108, 9eleqtri 2837 . 2 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 }
114, 10eqeltrdi 2847 1 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  {cpr 4563  cfv 6433  (class class class)co 7275  0gc0g 17150  1rcur 19737   unitVec cuvc 20989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-uvc 20990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator