MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvvcl Structured version   Visualization version   GIF version

Theorem uvcvvcl 21726
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvvcl (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })

Proof of Theorem uvcvvcl
StepHypRef Expression
1 uvcfval.u . . 3 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . 3 1 = (1r𝑅)
3 uvcfval.z . . 3 0 = (0g𝑅)
41, 2, 3uvcvval 21725 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
52fvexi 6914 . . . 4 1 ∈ V
63fvexi 6914 . . . 4 0 ∈ V
7 ifpr 4698 . . . 4 (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 })
85, 6, 7mp2an 690 . . 3 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }
9 prcom 4739 . . 3 { 1 , 0 } = { 0 , 1 }
108, 9eleqtri 2826 . 2 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 }
114, 10eqeltrdi 2836 1 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471  ifcif 4530  {cpr 4632  cfv 6551  (class class class)co 7424  0gc0g 17426  1rcur 20126   unitVec cuvc 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-uvc 21722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator