MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvvcl Structured version   Visualization version   GIF version

Theorem uvcvvcl 21830
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvvcl (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })

Proof of Theorem uvcvvcl
StepHypRef Expression
1 uvcfval.u . . 3 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . 3 1 = (1r𝑅)
3 uvcfval.z . . 3 0 = (0g𝑅)
41, 2, 3uvcvval 21829 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
52fvexi 6934 . . . 4 1 ∈ V
63fvexi 6934 . . . 4 0 ∈ V
7 ifpr 4716 . . . 4 (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 })
85, 6, 7mp2an 691 . . 3 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }
9 prcom 4757 . . 3 { 1 , 0 } = { 0 , 1 }
108, 9eleqtri 2842 . 2 if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 }
114, 10eqeltrdi 2852 1 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) ∈ { 0 , 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  {cpr 4650  cfv 6573  (class class class)co 7448  0gc0g 17499  1rcur 20208   unitVec cuvc 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-uvc 21826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator