![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcvvcl | Structured version Visualization version GIF version |
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcfval.o | ⊢ 1 = (1r‘𝑅) |
uvcfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvvcl | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcfval.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | uvcfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | uvcfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcvval 21341 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
5 | 2 | fvexi 6906 | . . . 4 ⊢ 1 ∈ V |
6 | 3 | fvexi 6906 | . . . 4 ⊢ 0 ∈ V |
7 | ifpr 4696 | . . . 4 ⊢ (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }) | |
8 | 5, 6, 7 | mp2an 691 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 } |
9 | prcom 4737 | . . 3 ⊢ { 1 , 0 } = { 0 , 1 } | |
10 | 8, 9 | eleqtri 2832 | . 2 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 } |
11 | 4, 10 | eqeltrdi 2842 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ifcif 4529 {cpr 4631 ‘cfv 6544 (class class class)co 7409 0gc0g 17385 1rcur 20004 unitVec cuvc 21337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-uvc 21338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |