![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcvvcl | Structured version Visualization version GIF version |
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcfval.o | ⊢ 1 = (1r‘𝑅) |
uvcfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvvcl | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcfval.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | uvcfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | uvcfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcvval 21725 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
5 | 2 | fvexi 6914 | . . . 4 ⊢ 1 ∈ V |
6 | 3 | fvexi 6914 | . . . 4 ⊢ 0 ∈ V |
7 | ifpr 4698 | . . . 4 ⊢ (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }) | |
8 | 5, 6, 7 | mp2an 690 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 } |
9 | prcom 4739 | . . 3 ⊢ { 1 , 0 } = { 0 , 1 } | |
10 | 8, 9 | eleqtri 2826 | . 2 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 } |
11 | 4, 10 | eqeltrdi 2836 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3471 ifcif 4530 {cpr 4632 ‘cfv 6551 (class class class)co 7424 0gc0g 17426 1rcur 20126 unitVec cuvc 21721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-uvc 21722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |