Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcvvcl | Structured version Visualization version GIF version |
Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcfval.o | ⊢ 1 = (1r‘𝑅) |
uvcfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcvvcl | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcfval.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | uvcfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | uvcfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcvval 21004 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
5 | 2 | fvexi 6785 | . . . 4 ⊢ 1 ∈ V |
6 | 3 | fvexi 6785 | . . . 4 ⊢ 0 ∈ V |
7 | ifpr 4633 | . . . 4 ⊢ (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }) | |
8 | 5, 6, 7 | mp2an 689 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 } |
9 | prcom 4674 | . . 3 ⊢ { 1 , 0 } = { 0 , 1 } | |
10 | 8, 9 | eleqtri 2839 | . 2 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 } |
11 | 4, 10 | eqeltrdi 2849 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ifcif 4465 {cpr 4569 ‘cfv 6432 (class class class)co 7272 0gc0g 17161 1rcur 19748 unitVec cuvc 21000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-uvc 21001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |