| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvvcl | Structured version Visualization version GIF version | ||
| Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcfval.o | ⊢ 1 = (1r‘𝑅) |
| uvcfval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvvcl | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcfval.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | uvcfval.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 3 | uvcfval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcvval 21732 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 5 | 2 | fvexi 6845 | . . . 4 ⊢ 1 ∈ V |
| 6 | 3 | fvexi 6845 | . . . 4 ⊢ 0 ∈ V |
| 7 | ifpr 4647 | . . . 4 ⊢ (( 1 ∈ V ∧ 0 ∈ V) → if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 }) | |
| 8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 1 , 0 } |
| 9 | prcom 4686 | . . 3 ⊢ { 1 , 0 } = { 0 , 1 } | |
| 10 | 8, 9 | eleqtri 2831 | . 2 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ { 0 , 1 } |
| 11 | 4, 10 | eqeltrdi 2841 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4476 {cpr 4579 ‘cfv 6489 (class class class)co 7355 0gc0g 17350 1rcur 20107 unitVec cuvc 21728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-uvc 21729 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |