| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indf | Structured version Visualization version GIF version | ||
| Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
| Ref | Expression |
|---|---|
| indf | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indval 32860 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
| 2 | 1re 11123 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | 0re 11125 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 4 | ifpr 4647 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0} |
| 6 | prcom 4686 | . . . 4 ⊢ {1, 0} = {0, 1} | |
| 7 | 5, 6 | eleqtri 2831 | . . 3 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 8 | 7 | a1i 11 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑥 ∈ 𝑂) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
| 9 | 1, 8 | fmpt3d 7058 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 ifcif 4476 {cpr 4579 ⟶wf 6485 ‘cfv 6489 ℝcr 11016 0cc0 11017 1c1 11018 𝟭cind 32857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-i2m1 11085 ax-1ne0 11086 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-ind 32858 |
| This theorem is referenced by: indpi1 32869 indsum 32870 indsumin 32871 prodindf 32872 indpreima 32875 indf1ofs 32876 indsupp 32877 indfsd 32878 elrgspnsubrunlem1 33257 gsumind 33354 mplmulmvr 33632 esplylem 33652 esplympl 33653 esplymhp 33654 esplyfv1 33655 esplyfv 33656 esplyfval3 33658 esplyind 33659 vieta 33664 breprexpnat 34719 circlemethnat 34726 |
| Copyright terms: Public domain | W3C validator |