Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf Structured version   Visualization version   GIF version

Theorem indf 32862
Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indf ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})

Proof of Theorem indf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 32860 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
2 1re 11123 . . . . 5 1 ∈ ℝ
3 0re 11125 . . . . 5 0 ∈ ℝ
4 ifpr 4647 . . . . 5 ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {1, 0})
52, 3, 4mp2an 692 . . . 4 if(𝑥𝐴, 1, 0) ∈ {1, 0}
6 prcom 4686 . . . 4 {1, 0} = {0, 1}
75, 6eleqtri 2831 . . 3 if(𝑥𝐴, 1, 0) ∈ {0, 1}
87a1i 11 . 2 (((𝑂𝑉𝐴𝑂) ∧ 𝑥𝑂) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
91, 8fmpt3d 7058 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wss 3898  ifcif 4476  {cpr 4579  wf 6485  cfv 6489  cr 11016  0cc0 11017  1c1 11018  𝟭cind 32857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-i2m1 11085  ax-1ne0 11086  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-ind 32858
This theorem is referenced by:  indpi1  32869  indsum  32870  indsumin  32871  prodindf  32872  indpreima  32875  indf1ofs  32876  indsupp  32877  indfsd  32878  elrgspnsubrunlem1  33257  gsumind  33354  mplmulmvr  33632  esplylem  33652  esplympl  33653  esplymhp  33654  esplyfv1  33655  esplyfv  33656  esplyfval3  33658  esplyind  33659  vieta  33664  breprexpnat  34719  circlemethnat  34726
  Copyright terms: Public domain W3C validator