Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indf | Structured version Visualization version GIF version |
Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
Ref | Expression |
---|---|
indf | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indval 31960 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
2 | 1re 10959 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 0re 10961 | . . . . 5 ⊢ 0 ∈ ℝ | |
4 | ifpr 4632 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0}) | |
5 | 2, 3, 4 | mp2an 688 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0} |
6 | prcom 4673 | . . . 4 ⊢ {1, 0} = {0, 1} | |
7 | 5, 6 | eleqtri 2838 | . . 3 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
8 | 7 | a1i 11 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑥 ∈ 𝑂) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
9 | 1, 8 | fmpt3d 6984 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3891 ifcif 4464 {cpr 4568 ⟶wf 6426 ‘cfv 6430 ℝcr 10854 0cc0 10855 1c1 10856 𝟭cind 31957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-ind 31958 |
This theorem is referenced by: indpi1 31967 indsum 31968 indsumin 31969 prodindf 31970 indpreima 31972 indf1ofs 31973 breprexpnat 32593 circlemethnat 32600 |
Copyright terms: Public domain | W3C validator |