| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indf | Structured version Visualization version GIF version | ||
| Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
| Ref | Expression |
|---|---|
| indf | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indval 32832 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
| 2 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | 0re 11114 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 4 | ifpr 4646 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0} |
| 6 | prcom 4685 | . . . 4 ⊢ {1, 0} = {0, 1} | |
| 7 | 5, 6 | eleqtri 2829 | . . 3 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 8 | 7 | a1i 11 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑥 ∈ 𝑂) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
| 9 | 1, 8 | fmpt3d 7049 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 ifcif 4475 {cpr 4578 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 0cc0 11006 1c1 11007 𝟭cind 32829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-ind 32830 |
| This theorem is referenced by: indpi1 32839 indsum 32840 indsumin 32841 prodindf 32842 indpreima 32844 indf1ofs 32845 indsupp 32846 indfsd 32847 elrgspnsubrunlem1 33212 gsumind 33308 esplylem 33585 esplympl 33586 esplymhp 33587 esplyfv1 33588 esplyfv 33589 breprexpnat 34645 circlemethnat 34652 |
| Copyright terms: Public domain | W3C validator |