| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indf | Structured version Visualization version GIF version | ||
| Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
| Ref | Expression |
|---|---|
| indf | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indval 32835 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
| 2 | 1re 11240 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | 0re 11242 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 4 | ifpr 4674 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0} |
| 6 | prcom 4713 | . . . 4 ⊢ {1, 0} = {0, 1} | |
| 7 | 5, 6 | eleqtri 2833 | . . 3 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 8 | 7 | a1i 11 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑥 ∈ 𝑂) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
| 9 | 1, 8 | fmpt3d 7111 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 ifcif 4505 {cpr 4608 ⟶wf 6532 ‘cfv 6536 ℝcr 11133 0cc0 11134 1c1 11135 𝟭cind 32832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-ind 32833 |
| This theorem is referenced by: indpi1 32842 indsum 32843 indsumin 32844 prodindf 32845 indpreima 32847 indf1ofs 32848 indsupp 32849 elrgspnsubrunlem1 33247 breprexpnat 34671 circlemethnat 34678 |
| Copyright terms: Public domain | W3C validator |