Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indf | Structured version Visualization version GIF version |
Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
Ref | Expression |
---|---|
indf | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indval 32026 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
2 | 1re 11021 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 0re 11023 | . . . . 5 ⊢ 0 ∈ ℝ | |
4 | ifpr 4631 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0}) | |
5 | 2, 3, 4 | mp2an 690 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {1, 0} |
6 | prcom 4672 | . . . 4 ⊢ {1, 0} = {0, 1} | |
7 | 5, 6 | eleqtri 2835 | . . 3 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
8 | 7 | a1i 11 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑥 ∈ 𝑂) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
9 | 1, 8 | fmpt3d 7022 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ⊆ wss 3892 ifcif 4465 {cpr 4567 ⟶wf 6454 ‘cfv 6458 ℝcr 10916 0cc0 10917 1c1 10918 𝟭cind 32023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-i2m1 10985 ax-1ne0 10986 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-ind 32024 |
This theorem is referenced by: indpi1 32033 indsum 32034 indsumin 32035 prodindf 32036 indpreima 32038 indf1ofs 32039 breprexpnat 32659 circlemethnat 32666 |
Copyright terms: Public domain | W3C validator |