MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppr Structured version   Visualization version   GIF version

Theorem suppr 9423
Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
suppr ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))

Proof of Theorem suppr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → 𝑅 Or 𝐴)
2 ifcl 4534 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ 𝐴)
323adant1 1130 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ 𝐴)
4 ifpr 4657 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
543adant1 1130 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
6 breq1 5110 . . . . . 6 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐵𝑅𝐵 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
76notbid 318 . . . . 5 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐵 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
8 breq1 5110 . . . . . 6 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐶𝑅𝐵 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
98notbid 318 . . . . 5 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐵 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
10 sonr 5570 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
11103adant3 1132 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅𝐵)
1211adantr 480 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐵)
13 simpr 484 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵)
147, 9, 12, 13ifbothda 4527 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵)
15 breq1 5110 . . . . . 6 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐵𝑅𝐶 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
1615notbid 318 . . . . 5 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐶 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
17 breq1 5110 . . . . . 6 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐶𝑅𝐶 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
1817notbid 318 . . . . 5 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐶 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
19 so2nr 5574 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
20193impb 1114 . . . . . . . 8 ((𝑅 Or 𝐴𝐶𝐴𝐵𝐴) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
21203com23 1126 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
22 imnan 399 . . . . . . 7 ((𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶) ↔ ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
2321, 22sylibr 234 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶))
2423imp 406 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)
25 sonr 5570 . . . . . . 7 ((𝑅 Or 𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
26253adant2 1131 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
2726adantr 480 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶)
2816, 18, 24, 27ifbothda 4527 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)
29 breq2 5111 . . . . . . 7 (𝑦 = 𝐵 → (if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
3029notbid 318 . . . . . 6 (𝑦 = 𝐵 → (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
31 breq2 5111 . . . . . . 7 (𝑦 = 𝐶 → (if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
3231notbid 318 . . . . . 6 (𝑦 = 𝐶 → (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
3330, 32ralprg 4660 . . . . 5 ((𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵 ∧ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)))
34333adant1 1130 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵 ∧ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)))
3514, 28, 34mpbir2and 713 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦)
3635r19.21bi 3229 . 2 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝑦 ∈ {𝐵, 𝐶}) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦)
371, 3, 5, 36supmax 9419 1 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ifcif 4488  {cpr 4591   class class class wbr 5107   Or wor 5545  supcsup 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-po 5546  df-so 5547  df-iota 6464  df-riota 7344  df-sup 9393
This theorem is referenced by:  supsn  9424  infsupprpr  9457  2resupmax  13148  tmsxpsval2  24427  esumsnf  34054  limsup10ex  45771  sge0sn  46377  prproropf1olem2  47505  prproropf1olem3  47506  prproropf1olem4  47507
  Copyright terms: Public domain W3C validator