MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrwlkprop Structured version   Visualization version   GIF version

Theorem lfgrwlkprop 29615
Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
Hypothesis
Ref Expression
lfgrwlkprop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrwlkprop ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐺   𝑘,𝐼,𝑥   𝑃,𝑘   𝑘,𝑉,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrwlkprop
StepHypRef Expression
1 wlkv 29540 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 lfgrwlkprop.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3iswlk 29538 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
51, 4syl 17 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
6 ifptru 1074 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
76adantr 480 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
8 simplr 768 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
9 wrdsymbcl 14492 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
109ad4ant14 752 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
118, 10ffvelcdmd 7057 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
12 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐼‘(𝐹𝑘)) → (♯‘𝑥) = (♯‘(𝐼‘(𝐹𝑘))))
1312breq2d 5119 . . . . . . . . . . . . . . 15 (𝑥 = (𝐼‘(𝐹𝑘)) → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
1413elrab 3659 . . . . . . . . . . . . . 14 ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
15 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (♯‘(𝐼‘(𝐹𝑘))) = (♯‘{(𝑃𝑘)}))
1615breq2d 5119 . . . . . . . . . . . . . . . . . 18 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) ↔ 2 ≤ (♯‘{(𝑃𝑘)})))
17 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (𝑃𝑘) ∈ V
18 hashsng 14334 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ V → (♯‘{(𝑃𝑘)}) = 1)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (♯‘{(𝑃𝑘)}) = 1
2019breq2i 5115 . . . . . . . . . . . . . . . . . . 19 (2 ≤ (♯‘{(𝑃𝑘)}) ↔ 2 ≤ 1)
21 1lt2 12352 . . . . . . . . . . . . . . . . . . . 20 1 < 2
22 1re 11174 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
23 2re 12260 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
2422, 23ltnlei 11295 . . . . . . . . . . . . . . . . . . . . 21 (1 < 2 ↔ ¬ 2 ≤ 1)
25 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2624, 25sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (1 < 2 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2721, 26ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2820, 27sylbi 217 . . . . . . . . . . . . . . . . . 18 (2 ≤ (♯‘{(𝑃𝑘)}) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2916, 28biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3029com12 32 . . . . . . . . . . . . . . . 16 (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3314, 32biimtrid 242 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3411, 33mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3534adantl 481 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
367, 35sylbid 240 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3736ex 412 . . . . . . . . 9 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
38 neqne 2933 . . . . . . . . . 10 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
39382a1d 26 . . . . . . . . 9 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4037, 39pm2.61i 182 . . . . . . . 8 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4140ralimdva 3145 . . . . . . 7 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4241ex 412 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4342com23 86 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
44433impia 1117 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
455, 44biimtrdi 253 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4645pm2.43i 52 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4746imp 406 1 ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589  {cpr 4591   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  2c2 12241  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  Vtxcvtx 28923  iEdgciedg 28924  Walkscwlks 29524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-wlks 29527
This theorem is referenced by:  lfgriswlk  29616
  Copyright terms: Public domain W3C validator