MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrwlkprop Structured version   Visualization version   GIF version

Theorem lfgrwlkprop 29723
Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
Hypothesis
Ref Expression
lfgrwlkprop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrwlkprop ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐺   𝑘,𝐼,𝑥   𝑃,𝑘   𝑘,𝑉,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrwlkprop
StepHypRef Expression
1 wlkv 29648 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2740 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 lfgrwlkprop.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3iswlk 29646 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
51, 4syl 17 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
6 ifptru 1075 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
76adantr 480 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
8 simplr 768 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
9 wrdsymbcl 14575 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
109ad4ant14 751 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
118, 10ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
12 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐼‘(𝐹𝑘)) → (♯‘𝑥) = (♯‘(𝐼‘(𝐹𝑘))))
1312breq2d 5178 . . . . . . . . . . . . . . 15 (𝑥 = (𝐼‘(𝐹𝑘)) → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
1413elrab 3708 . . . . . . . . . . . . . 14 ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
15 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (♯‘(𝐼‘(𝐹𝑘))) = (♯‘{(𝑃𝑘)}))
1615breq2d 5178 . . . . . . . . . . . . . . . . . 18 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) ↔ 2 ≤ (♯‘{(𝑃𝑘)})))
17 fvex 6933 . . . . . . . . . . . . . . . . . . . . 21 (𝑃𝑘) ∈ V
18 hashsng 14418 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ V → (♯‘{(𝑃𝑘)}) = 1)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (♯‘{(𝑃𝑘)}) = 1
2019breq2i 5174 . . . . . . . . . . . . . . . . . . 19 (2 ≤ (♯‘{(𝑃𝑘)}) ↔ 2 ≤ 1)
21 1lt2 12464 . . . . . . . . . . . . . . . . . . . 20 1 < 2
22 1re 11290 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
23 2re 12367 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
2422, 23ltnlei 11411 . . . . . . . . . . . . . . . . . . . . 21 (1 < 2 ↔ ¬ 2 ≤ 1)
25 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2624, 25sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (1 < 2 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2721, 26ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2820, 27sylbi 217 . . . . . . . . . . . . . . . . . 18 (2 ≤ (♯‘{(𝑃𝑘)}) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2916, 28biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3029com12 32 . . . . . . . . . . . . . . . 16 (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3314, 32biimtrid 242 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3411, 33mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3534adantl 481 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
367, 35sylbid 240 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3736ex 412 . . . . . . . . 9 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
38 neqne 2954 . . . . . . . . . 10 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
39382a1d 26 . . . . . . . . 9 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4037, 39pm2.61i 182 . . . . . . . 8 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4140ralimdva 3173 . . . . . . 7 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4241ex 412 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4342com23 86 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
44433impia 1117 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
455, 44biimtrdi 253 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4645pm2.43i 52 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4746imp 406 1 ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1063  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648  {cpr 4650   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  2c2 12348  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  Vtxcvtx 29031  iEdgciedg 29032  Walkscwlks 29632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wlks 29635
This theorem is referenced by:  lfgriswlk  29724
  Copyright terms: Public domain W3C validator