MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrwlkprop Structured version   Visualization version   GIF version

Theorem lfgrwlkprop 29672
Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
Hypothesis
Ref Expression
lfgrwlkprop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrwlkprop ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐺   𝑘,𝐼,𝑥   𝑃,𝑘   𝑘,𝑉,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrwlkprop
StepHypRef Expression
1 wlkv 29597 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 lfgrwlkprop.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3iswlk 29595 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
51, 4syl 17 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
6 ifptru 1074 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
76adantr 480 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
8 simplr 768 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
9 wrdsymbcl 14550 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
109ad4ant14 752 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
118, 10ffvelcdmd 7080 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
12 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐼‘(𝐹𝑘)) → (♯‘𝑥) = (♯‘(𝐼‘(𝐹𝑘))))
1312breq2d 5136 . . . . . . . . . . . . . . 15 (𝑥 = (𝐼‘(𝐹𝑘)) → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
1413elrab 3676 . . . . . . . . . . . . . 14 ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))))
15 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (♯‘(𝐼‘(𝐹𝑘))) = (♯‘{(𝑃𝑘)}))
1615breq2d 5136 . . . . . . . . . . . . . . . . . 18 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) ↔ 2 ≤ (♯‘{(𝑃𝑘)})))
17 fvex 6894 . . . . . . . . . . . . . . . . . . . . 21 (𝑃𝑘) ∈ V
18 hashsng 14392 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ V → (♯‘{(𝑃𝑘)}) = 1)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (♯‘{(𝑃𝑘)}) = 1
2019breq2i 5132 . . . . . . . . . . . . . . . . . . 19 (2 ≤ (♯‘{(𝑃𝑘)}) ↔ 2 ≤ 1)
21 1lt2 12416 . . . . . . . . . . . . . . . . . . . 20 1 < 2
22 1re 11240 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
23 2re 12319 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
2422, 23ltnlei 11361 . . . . . . . . . . . . . . . . . . . . 21 (1 < 2 ↔ ¬ 2 ≤ 1)
25 pm2.21 123 . . . . . . . . . . . . . . . . . . . . 21 (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2624, 25sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (1 < 2 → (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2721, 26ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 1 → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2820, 27sylbi 217 . . . . . . . . . . . . . . . . . 18 (2 ≤ (♯‘{(𝑃𝑘)}) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2916, 28biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3029com12 32 . . . . . . . . . . . . . . . 16 (2 ≤ (♯‘(𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑘)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3314, 32biimtrid 242 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
3411, 33mpd 15 . . . . . . . . . . . 12 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3534adantl 481 . . . . . . . . . . 11 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
367, 35sylbid 240 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3736ex 412 . . . . . . . . 9 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
38 neqne 2941 . . . . . . . . . 10 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
39382a1d 26 . . . . . . . . 9 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4037, 39pm2.61i 182 . . . . . . . 8 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4140ralimdva 3153 . . . . . . 7 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4241ex 412 . . . . . 6 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4342com23 86 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
44433impia 1117 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
455, 44biimtrdi 253 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))))
4645pm2.43i 52 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
4746imp 406 1 ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606  {cpr 4608   class class class wbr 5124  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  2c2 12300  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536  Vtxcvtx 28980  iEdgciedg 28981  Walkscwlks 29581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-wlks 29584
This theorem is referenced by:  lfgriswlk  29673
  Copyright terms: Public domain W3C validator