Proof of Theorem lfgrwlkprop
Step | Hyp | Ref
| Expression |
1 | | wlkv 27882 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | lfgrwlkprop.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
4 | 2, 3 | iswlk 27880 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
6 | | ifptru 1072 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
7 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
8 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
9 | | wrdsymbcl 14158 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑘) ∈ dom 𝐼) |
10 | 9 | ad4ant14 748 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑘) ∈ dom 𝐼) |
11 | 8, 10 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
12 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐼‘(𝐹‘𝑘)) → (♯‘𝑥) = (♯‘(𝐼‘(𝐹‘𝑘)))) |
13 | 12 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐼‘(𝐹‘𝑘)) → (2 ≤ (♯‘𝑥) ↔ 2 ≤
(♯‘(𝐼‘(𝐹‘𝑘))))) |
14 | 13 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘(𝐹‘𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘(𝐹‘𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑘))))) |
15 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (♯‘(𝐼‘(𝐹‘𝑘))) = (♯‘{(𝑃‘𝑘)})) |
16 | 15 | breq2d 5082 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑘))) ↔ 2 ≤ (♯‘{(𝑃‘𝑘)}))) |
17 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃‘𝑘) ∈ V |
18 | | hashsng 14012 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃‘𝑘) ∈ V → (♯‘{(𝑃‘𝑘)}) = 1) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(♯‘{(𝑃‘𝑘)}) = 1 |
20 | 19 | breq2i 5078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ≤
(♯‘{(𝑃‘𝑘)}) ↔ 2 ≤ 1) |
21 | | 1lt2 12074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
2 |
22 | | 1re 10906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ |
23 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℝ |
24 | 22, 23 | ltnlei 11026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
25 | | pm2.21 123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 2
≤ 1 → (2 ≤ 1 → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
26 | 24, 25 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 < 2
→ (2 ≤ 1 → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
27 | 21, 26 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ≤ 1
→ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
28 | 20, 27 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ≤
(♯‘{(𝑃‘𝑘)}) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
29 | 16, 28 | syl6bi 252 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑘))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
30 | 29 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (2 ≤
(♯‘(𝐼‘(𝐹‘𝑘))) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼‘(𝐹‘𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑘)))) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((𝐼‘(𝐹‘𝑘)) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑘)))) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
33 | 14, 32 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹‘𝑘)) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
34 | 11, 33 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
36 | 7, 35 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹)))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
37 | 36 | ex 412 |
. . . . . . . . 9
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
38 | | neqne 2950 |
. . . . . . . . . 10
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
39 | 38 | 2a1d 26 |
. . . . . . . . 9
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
40 | 37, 39 | pm2.61i 182 |
. . . . . . . 8
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
41 | 40 | ralimdva 3102 |
. . . . . . 7
⊢ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
42 | 41 | ex 412 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
43 | 42 | com23 86 |
. . . . 5
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
44 | 43 | 3impia 1115 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
45 | 5, 44 | syl6bi 252 |
. . 3
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))))) |
46 | 45 | pm2.43i 52 |
. 2
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
47 | 46 | imp 406 |
1
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈
(0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |