Proof of Theorem eupth2lem3lem3
| Step | Hyp | Ref
| Expression |
| 1 | | trlsegvdeg.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 2 | | fveq2 6876 |
. . . . . . . 8
⊢ (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈)) |
| 3 | 2 | breq2d 5131 |
. . . . . . 7
⊢ (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈))) |
| 4 | 3 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑈 → (¬ 2 ∥
((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈))) |
| 5 | 4 | elrab3 3672 |
. . . . 5
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈))) |
| 6 | 1, 5 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑈 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈))) |
| 7 | | eupth2lem3.o |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
| 8 | 7 | eleq2d 2820 |
. . . 4
⊢ (𝜑 → (𝑈 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)}))) |
| 9 | 6, 8 | bitr3d 281 |
. . 3
⊢ (𝜑 → (¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)}))) |
| 10 | 9 | adantr 480 |
. 2
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)}))) |
| 11 | | 2z 12624 |
. . . . . 6
⊢ 2 ∈
ℤ |
| 12 | 11 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∈
ℤ) |
| 13 | | trlsegvdeg.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 14 | | trlsegvdeg.i |
. . . . . . . 8
⊢ 𝐼 = (iEdg‘𝐺) |
| 15 | | trlsegvdeg.f |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐼) |
| 16 | | trlsegvdeg.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 17 | | trlsegvdeg.w |
. . . . . . . 8
⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 18 | | trlsegvdeg.vx |
. . . . . . . 8
⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| 19 | | trlsegvdeg.vy |
. . . . . . . 8
⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| 20 | | trlsegvdeg.vz |
. . . . . . . 8
⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| 21 | | trlsegvdeg.ix |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 22 | | trlsegvdeg.iy |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 23 | | trlsegvdeg.iz |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 24 | 13, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23 | eupth2lem3lem1 30209 |
. . . . . . 7
⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈
ℕ0) |
| 25 | 24 | nn0zd 12614 |
. . . . . 6
⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ) |
| 26 | 25 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ) |
| 27 | 13, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23 | eupth2lem3lem2 30210 |
. . . . . . 7
⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈
ℕ0) |
| 28 | 27 | nn0zd 12614 |
. . . . . 6
⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ) |
| 30 | | z2even 16389 |
. . . . . . 7
⊢ 2 ∥
2 |
| 31 | 19 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → (Vtx‘𝑌) = 𝑉) |
| 32 | | fvexd 6891 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → (𝐹‘𝑁) ∈ V) |
| 33 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → 𝑈 ∈ 𝑉) |
| 34 | 22 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 35 | | eupth2lem3lem3.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) |
| 37 | | ifptru 1074 |
. . . . . . . . . . . . . 14
⊢ ((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁))) ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)})) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁))) ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)})) |
| 39 | 36, 38 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}) |
| 40 | | sneq 4611 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘𝑁) = 𝑈 → {(𝑃‘𝑁)} = {𝑈}) |
| 41 | 40 | eqcoms 2743 |
. . . . . . . . . . . 12
⊢ (𝑈 = (𝑃‘𝑁) → {(𝑃‘𝑁)} = {𝑈}) |
| 42 | 39, 41 | sylan9eq 2790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → (𝐼‘(𝐹‘𝑁)) = {𝑈}) |
| 43 | 42 | opeq2d 4856 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → 〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉 = 〈(𝐹‘𝑁), {𝑈}〉) |
| 44 | 43 | sneqd 4613 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} = {〈(𝐹‘𝑁), {𝑈}〉}) |
| 45 | 34, 44 | eqtrd 2770 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → (iEdg‘𝑌) = {〈(𝐹‘𝑁), {𝑈}〉}) |
| 46 | 31, 32, 33, 45 | 1loopgrvd2 29483 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 2) |
| 47 | 30, 46 | breqtrrid 5157 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃‘𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈)) |
| 48 | | z0even 16386 |
. . . . . . 7
⊢ 2 ∥
0 |
| 49 | 19 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → (Vtx‘𝑌) = 𝑉) |
| 50 | | fvexd 6891 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → (𝐹‘𝑁) ∈ V) |
| 51 | 13, 14, 15, 16, 1, 17 | trlsegvdeglem1 30201 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
| 52 | 51 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃‘𝑁) ∈ 𝑉) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → (𝑃‘𝑁) ∈ 𝑉) |
| 54 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 55 | 39 | opeq2d 4856 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → 〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉 = 〈(𝐹‘𝑁), {(𝑃‘𝑁)}〉) |
| 56 | 55 | sneqd 4613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} = {〈(𝐹‘𝑁), {(𝑃‘𝑁)}〉}) |
| 57 | 54, 56 | eqtrd 2770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {〈(𝐹‘𝑁), {(𝑃‘𝑁)}〉}) |
| 58 | 57 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → (iEdg‘𝑌) = {〈(𝐹‘𝑁), {(𝑃‘𝑁)}〉}) |
| 59 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → 𝑈 ∈ 𝑉) |
| 60 | 59 | anim1i 615 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → (𝑈 ∈ 𝑉 ∧ 𝑈 ≠ (𝑃‘𝑁))) |
| 61 | | eldifsn 4762 |
. . . . . . . . 9
⊢ (𝑈 ∈ (𝑉 ∖ {(𝑃‘𝑁)}) ↔ (𝑈 ∈ 𝑉 ∧ 𝑈 ≠ (𝑃‘𝑁))) |
| 62 | 60, 61 | sylibr 234 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → 𝑈 ∈ (𝑉 ∖ {(𝑃‘𝑁)})) |
| 63 | 49, 50, 53, 58, 62 | 1loopgrvd0 29484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 0) |
| 64 | 48, 63 | breqtrrid 5157 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃‘𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈)) |
| 65 | 47, 64 | pm2.61dane 3019 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∥
((VtxDeg‘𝑌)‘𝑈)) |
| 66 | | dvdsadd2b 16325 |
. . . . 5
⊢ ((2
∈ ℤ ∧ ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ (((VtxDeg‘𝑌)‘𝑈) ∈ ℤ ∧ 2 ∥
((VtxDeg‘𝑌)‘𝑈))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)))) |
| 67 | 12, 26, 29, 65, 66 | syl112anc 1376 |
. . . 4
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)))) |
| 68 | 27 | nn0cnd 12564 |
. . . . . . 7
⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℂ) |
| 69 | 24 | nn0cnd 12564 |
. . . . . . 7
⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ) |
| 70 | 68, 69 | addcomd 11437 |
. . . . . 6
⊢ (𝜑 → (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
| 71 | 70 | breq2d 5131 |
. . . . 5
⊢ (𝜑 → (2 ∥
(((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
| 72 | 71 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥
(((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
| 73 | 67, 72 | bitrd 279 |
. . 3
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
| 74 | 73 | notbid 318 |
. 2
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ ¬ 2 ∥
(((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))) |
| 75 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) |
| 76 | 75 | eqeq2d 2746 |
. . . 4
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → ((𝑃‘0) = (𝑃‘𝑁) ↔ (𝑃‘0) = (𝑃‘(𝑁 + 1)))) |
| 77 | 75 | preq2d 4716 |
. . . 4
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → {(𝑃‘0), (𝑃‘𝑁)} = {(𝑃‘0), (𝑃‘(𝑁 + 1))}) |
| 78 | 76, 77 | ifbieq2d 4527 |
. . 3
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)}) = if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})) |
| 79 | 78 | eleq2d 2820 |
. 2
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (𝑈 ∈ if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |
| 80 | 10, 74, 79 | 3bitr3d 309 |
1
⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥
(((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |