MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem3 28285
Description: Lemma for eupth2lem3 28291, formerly part of proof of eupth2lem3 28291: If a loop {(𝑃𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
Assertion
Ref Expression
eupth2lem3lem3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem3
StepHypRef Expression
1 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
2 fveq2 6706 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
32breq2d 5055 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
43notbid 321 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
54elrab3 3596 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
61, 5syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
7 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
87eleq2d 2819 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96, 8bitr3d 284 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
109adantr 484 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
11 2z 12192 . . . . . 6 2 ∈ ℤ
1211a1i 11 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∈ ℤ)
13 trlsegvdeg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
14 trlsegvdeg.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
15 trlsegvdeg.f . . . . . . . 8 (𝜑 → Fun 𝐼)
16 trlsegvdeg.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
17 trlsegvdeg.w . . . . . . . 8 (𝜑𝐹(Trails‘𝐺)𝑃)
18 trlsegvdeg.vx . . . . . . . 8 (𝜑 → (Vtx‘𝑋) = 𝑉)
19 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
20 trlsegvdeg.vz . . . . . . . 8 (𝜑 → (Vtx‘𝑍) = 𝑉)
21 trlsegvdeg.ix . . . . . . . 8 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
22 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
23 trlsegvdeg.iz . . . . . . . 8 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
2413, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem1 28283 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
2524nn0zd 12263 . . . . . 6 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2625adantr 484 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2713, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem2 28284 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0)
2827nn0zd 12263 . . . . . 6 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
2928adantr 484 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
30 z2even 15912 . . . . . . 7 2 ∥ 2
3119ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
32 fvexd 6721 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐹𝑁) ∈ V)
331ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 𝑈𝑉)
3422ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
35 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3635adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
37 ifptru 1076 . . . . . . . . . . . . . 14 ((𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3837adantl 485 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3936, 38mpbid 235 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)})
40 sneq 4541 . . . . . . . . . . . . 13 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁)} = {𝑈})
4140eqcoms 2742 . . . . . . . . . . . 12 (𝑈 = (𝑃𝑁) → {(𝑃𝑁)} = {𝑈})
4239, 41sylan9eq 2794 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐼‘(𝐹𝑁)) = {𝑈})
4342opeq2d 4781 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {𝑈}⟩)
4443sneqd 4543 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {𝑈}⟩})
4534, 44eqtrd 2774 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {𝑈}⟩})
4631, 32, 33, 451loopgrvd2 27563 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 2)
4730, 46breqtrrid 5081 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
48 z0even 15909 . . . . . . 7 2 ∥ 0
4919ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
50 fvexd 6721 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝐹𝑁) ∈ V)
5113, 14, 15, 16, 1, 17trlsegvdeglem1 28275 . . . . . . . . . 10 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
5251simpld 498 . . . . . . . . 9 (𝜑 → (𝑃𝑁) ∈ 𝑉)
5352ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑃𝑁) ∈ 𝑉)
5422adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
5539opeq2d 4781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {(𝑃𝑁)}⟩)
5655sneqd 4543 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5754, 56eqtrd 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5857adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
591adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 𝑈𝑉)
6059anim1i 618 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
61 eldifsn 4690 . . . . . . . . 9 (𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}) ↔ (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
6260, 61sylibr 237 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}))
6349, 50, 53, 58, 621loopgrvd0 27564 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 0)
6448, 63breqtrrid 5081 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
6547, 64pm2.61dane 3022 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
66 dvdsadd2b 15848 . . . . 5 ((2 ∈ ℤ ∧ ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ (((VtxDeg‘𝑌)‘𝑈) ∈ ℤ ∧ 2 ∥ ((VtxDeg‘𝑌)‘𝑈))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6712, 26, 29, 65, 66syl112anc 1376 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6827nn0cnd 12135 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℂ)
6924nn0cnd 12135 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
7068, 69addcomd 11017 . . . . . 6 (𝜑 → (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
7170breq2d 5055 . . . . 5 (𝜑 → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7271adantr 484 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7367, 72bitrd 282 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7473notbid 321 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
75 simpr 488 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
7675eqeq2d 2745 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((𝑃‘0) = (𝑃𝑁) ↔ (𝑃‘0) = (𝑃‘(𝑁 + 1))))
7775preq2d 4646 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {(𝑃‘0), (𝑃𝑁)} = {(𝑃‘0), (𝑃‘(𝑁 + 1))})
7876, 77ifbieq2d 4455 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) = if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))
7978eleq2d 2819 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
8010, 74, 793bitr3d 312 1 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  if-wif 1063   = wceq 1543  wcel 2110  wne 2935  {crab 3058  Vcvv 3401  cdif 3854  wss 3857  c0 4227  ifcif 4429  {csn 4531  {cpr 4533  cop 4537   class class class wbr 5043  cres 5542  cima 5543  Fun wfun 6363  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   + caddc 10715  2c2 11868  cz 12159  ...cfz 13078  ..^cfzo 13221  chash 13879  cdvds 15796  Vtxcvtx 27059  iEdgciedg 27060  VtxDegcvtxdg 27525  Trailsctrls 27750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-xadd 12688  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-dvds 15797  df-edg 27111  df-uhgr 27121  df-ushgr 27122  df-uspgr 27213  df-vtxdg 27526  df-wlks 27659  df-trls 27752
This theorem is referenced by:  eupth2lem3lem7  28289
  Copyright terms: Public domain W3C validator