MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem3 29174
Description: Lemma for eupth2lem3 29180, formerly part of proof of eupth2lem3 29180: If a loop {(𝑃𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
Assertion
Ref Expression
eupth2lem3lem3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem3
StepHypRef Expression
1 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
2 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
32breq2d 5117 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
43notbid 317 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
54elrab3 3646 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
61, 5syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
7 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
87eleq2d 2823 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96, 8bitr3d 280 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
109adantr 481 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
11 2z 12535 . . . . . 6 2 ∈ ℤ
1211a1i 11 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∈ ℤ)
13 trlsegvdeg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
14 trlsegvdeg.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
15 trlsegvdeg.f . . . . . . . 8 (𝜑 → Fun 𝐼)
16 trlsegvdeg.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
17 trlsegvdeg.w . . . . . . . 8 (𝜑𝐹(Trails‘𝐺)𝑃)
18 trlsegvdeg.vx . . . . . . . 8 (𝜑 → (Vtx‘𝑋) = 𝑉)
19 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
20 trlsegvdeg.vz . . . . . . . 8 (𝜑 → (Vtx‘𝑍) = 𝑉)
21 trlsegvdeg.ix . . . . . . . 8 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
22 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
23 trlsegvdeg.iz . . . . . . . 8 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
2413, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem1 29172 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
2524nn0zd 12525 . . . . . 6 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2625adantr 481 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2713, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem2 29173 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0)
2827nn0zd 12525 . . . . . 6 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
2928adantr 481 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
30 z2even 16252 . . . . . . 7 2 ∥ 2
3119ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
32 fvexd 6857 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐹𝑁) ∈ V)
331ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 𝑈𝑉)
3422ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
35 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3635adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
37 ifptru 1074 . . . . . . . . . . . . . 14 ((𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3837adantl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3936, 38mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)})
40 sneq 4596 . . . . . . . . . . . . 13 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁)} = {𝑈})
4140eqcoms 2744 . . . . . . . . . . . 12 (𝑈 = (𝑃𝑁) → {(𝑃𝑁)} = {𝑈})
4239, 41sylan9eq 2796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐼‘(𝐹𝑁)) = {𝑈})
4342opeq2d 4837 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {𝑈}⟩)
4443sneqd 4598 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {𝑈}⟩})
4534, 44eqtrd 2776 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {𝑈}⟩})
4631, 32, 33, 451loopgrvd2 28451 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 2)
4730, 46breqtrrid 5143 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
48 z0even 16249 . . . . . . 7 2 ∥ 0
4919ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
50 fvexd 6857 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝐹𝑁) ∈ V)
5113, 14, 15, 16, 1, 17trlsegvdeglem1 29164 . . . . . . . . . 10 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
5251simpld 495 . . . . . . . . 9 (𝜑 → (𝑃𝑁) ∈ 𝑉)
5352ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑃𝑁) ∈ 𝑉)
5422adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
5539opeq2d 4837 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {(𝑃𝑁)}⟩)
5655sneqd 4598 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5754, 56eqtrd 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5857adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
591adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 𝑈𝑉)
6059anim1i 615 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
61 eldifsn 4747 . . . . . . . . 9 (𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}) ↔ (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
6260, 61sylibr 233 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}))
6349, 50, 53, 58, 621loopgrvd0 28452 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 0)
6448, 63breqtrrid 5143 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
6547, 64pm2.61dane 3032 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
66 dvdsadd2b 16188 . . . . 5 ((2 ∈ ℤ ∧ ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ (((VtxDeg‘𝑌)‘𝑈) ∈ ℤ ∧ 2 ∥ ((VtxDeg‘𝑌)‘𝑈))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6712, 26, 29, 65, 66syl112anc 1374 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6827nn0cnd 12475 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℂ)
6924nn0cnd 12475 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
7068, 69addcomd 11357 . . . . . 6 (𝜑 → (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
7170breq2d 5117 . . . . 5 (𝜑 → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7271adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7367, 72bitrd 278 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7473notbid 317 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
75 simpr 485 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
7675eqeq2d 2747 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((𝑃‘0) = (𝑃𝑁) ↔ (𝑃‘0) = (𝑃‘(𝑁 + 1))))
7775preq2d 4701 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {(𝑃‘0), (𝑃𝑁)} = {(𝑃‘0), (𝑃‘(𝑁 + 1))})
7876, 77ifbieq2d 4512 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) = if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))
7978eleq2d 2823 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
8010, 74, 793bitr3d 308 1 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1061   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  c0 4282  ifcif 4486  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  cres 5635  cima 5636  Fun wfun 6490  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  2c2 12208  cz 12499  ...cfz 13424  ..^cfzo 13567  chash 14230  cdvds 16136  Vtxcvtx 27947  iEdgciedg 27948  VtxDegcvtxdg 28413  Trailsctrls 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-xadd 13034  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-dvds 16137  df-edg 27999  df-uhgr 28009  df-ushgr 28010  df-uspgr 28101  df-vtxdg 28414  df-wlks 28547  df-trls 28640
This theorem is referenced by:  eupth2lem3lem7  29178
  Copyright terms: Public domain W3C validator