Step | Hyp | Ref
| Expression |
1 | | wlkv 27882 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
2 | | simp3l 1199 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺)) |
3 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃) |
4 | | c0ex 10900 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
5 | 4 | snid 4594 |
. . . . . . . . . . . 12
⊢ 0 ∈
{0} |
6 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
1 → (0..^(♯‘𝐹)) = (0..^1)) |
7 | | fzo01 13397 |
. . . . . . . . . . . . 13
⊢ (0..^1) =
{0} |
8 | 6, 7 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
1 → (0..^(♯‘𝐹)) = {0}) |
9 | 5, 8 | eleqtrrid 2846 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
1 → 0 ∈ (0..^(♯‘𝐹))) |
10 | 9 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((Fun
(iEdg‘𝐺) ∧
((♯‘𝐹) = 1
∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈
(0..^(♯‘𝐹))) |
11 | 10 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈
(0..^(♯‘𝐹))) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
13 | 12 | iedginwlk 27906 |
. . . . . . . . 9
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺)) |
14 | 2, 3, 11, 13 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺)) |
15 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
16 | 15, 12 | iswlkg 27883 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
17 | 8 | raleqdv 3339 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
1 → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
18 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
19 | | 0p1e1 12025 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
20 | 18, 19 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
21 | | wkslem2 27878 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))) |
22 | 20, 21 | mpdan 683 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))) |
23 | 4, 22 | ralsn 4614 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
{0}if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) |
24 | 17, 23 | bitrdi 286 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹) =
1 → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))) |
25 | 24 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ ((Fun
(iEdg‘𝐺) ∧
((♯‘𝐹) = 1
∧ (𝑃‘0) = (𝑃‘1))) →
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))) |
26 | | ifptru 1072 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})) |
27 | 26 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}) |
28 | 27 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))) |
29 | 28 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))) |
30 | 29 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ ((Fun
(iEdg‘𝐺) ∧
((♯‘𝐹) = 1
∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))) |
31 | 25, 30 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((Fun
(iEdg‘𝐺) ∧
((♯‘𝐹) = 1
∧ (𝑃‘0) = (𝑃‘1))) →
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))) |
32 | 31 | com12 32 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))) |
33 | 32 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))) |
34 | 16, 33 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))) |
35 | 34 | 3imp 1109 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))) |
36 | | edgval 27322 |
. . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
38 | 14, 35, 37 | 3eltr4d 2854 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺)) |
39 | 38 | 3exp 1117 |
. . . . . 6
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))) |
40 | 39 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))) |
41 | 1, 40 | mpcom 38 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))) |
42 | 41 | expd 415 |
. . 3
⊢ (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))) |
43 | 42 | impcom 407 |
. 2
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))) |
44 | 43 | imp 406 |
1
⊢ (((Fun
(iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)) |