MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl1loop Structured version   Visualization version   GIF version

Theorem wlkl1loop 27413
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wlkl1loop (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))

Proof of Theorem wlkl1loop
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27388 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 simp3l 1197 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺))
3 simp2 1133 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃)
4 c0ex 10629 . . . . . . . . . . . . 13 0 ∈ V
54snid 4595 . . . . . . . . . . . 12 0 ∈ {0}
6 oveq2 7158 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = (0..^1))
7 fzo01 13113 . . . . . . . . . . . . 13 (0..^1) = {0}
86, 7syl6eq 2872 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = {0})
95, 8eleqtrrid 2920 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
109ad2antrl 726 . . . . . . . . . 10 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈ (0..^(♯‘𝐹)))
11103ad2ant3 1131 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈ (0..^(♯‘𝐹)))
12 eqid 2821 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1312iedginwlk 27412 . . . . . . . . 9 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
142, 3, 11, 13syl3anc 1367 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
15 eqid 2821 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1615, 12iswlkg 27389 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
178raleqdv 3416 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
18 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
19 0p1e1 11753 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
2018, 19syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 + 1) = 1)
21 wkslem2 27384 . . . . . . . . . . . . . . . . 17 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2220, 21mpdan 685 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
234, 22ralsn 4613 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))
2417, 23syl6bb 289 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2524ad2antrl 726 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
26 ifptru 1068 . . . . . . . . . . . . . . . . 17 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}))
2726biimpa 479 . . . . . . . . . . . . . . . 16 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})
2827eqcomd 2827 . . . . . . . . . . . . . . 15 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
2928ex 415 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3029ad2antll 727 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3125, 30sylbid 242 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3231com12 32 . . . . . . . . . . 11 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
33323ad2ant3 1131 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3416, 33syl6bi 255 . . . . . . . . 9 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))))
35343imp 1107 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
36 edgval 26828 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
3736a1i 11 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3814, 35, 373eltr4d 2928 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
39383exp 1115 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
40393ad2ant1 1129 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
411, 40mpcom 38 . . . 4 (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4241expd 418 . . 3 (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
4342impcom 410 . 2 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4443imp 409 1 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  if-wif 1057  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  wss 3936  {csn 4561  {cpr 4563   class class class wbr 5059  dom cdm 5550  ran crn 5551  Fun wfun 6344  wf 6346  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855  Vtxcvtx 26775  iEdgciedg 26776  Edgcedg 26826  Walkscwlks 27372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-edg 26827  df-wlks 27375
This theorem is referenced by:  clwlkl1loop  27558  loop1cycl  32379
  Copyright terms: Public domain W3C validator