MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl1loop Structured version   Visualization version   GIF version

Theorem wlkl1loop 29601
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wlkl1loop (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))

Proof of Theorem wlkl1loop
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 29576 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 simp3l 1202 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺))
3 simp2 1137 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃)
4 c0ex 11128 . . . . . . . . . . . . 13 0 ∈ V
54snid 4616 . . . . . . . . . . . 12 0 ∈ {0}
6 oveq2 7361 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = (0..^1))
7 fzo01 13668 . . . . . . . . . . . . 13 (0..^1) = {0}
86, 7eqtrdi 2780 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = {0})
95, 8eleqtrrid 2835 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
109ad2antrl 728 . . . . . . . . . 10 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈ (0..^(♯‘𝐹)))
11103ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈ (0..^(♯‘𝐹)))
12 eqid 2729 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1312iedginwlk 29600 . . . . . . . . 9 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
142, 3, 11, 13syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
15 eqid 2729 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1615, 12iswlkg 29577 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
178raleqdv 3290 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
18 oveq1 7360 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
19 0p1e1 12263 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
2018, 19eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 + 1) = 1)
21 wkslem2 29572 . . . . . . . . . . . . . . . . 17 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2220, 21mpdan 687 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
234, 22ralsn 4635 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))
2417, 23bitrdi 287 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2524ad2antrl 728 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
26 ifptru 1074 . . . . . . . . . . . . . . . . 17 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}))
2726biimpa 476 . . . . . . . . . . . . . . . 16 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})
2827eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
2928ex 412 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3029ad2antll 729 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3125, 30sylbid 240 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3231com12 32 . . . . . . . . . . 11 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
33323ad2ant3 1135 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3416, 33biimtrdi 253 . . . . . . . . 9 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))))
35343imp 1110 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
36 edgval 29012 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
3736a1i 11 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3814, 35, 373eltr4d 2843 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
39383exp 1119 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
40393ad2ant1 1133 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
411, 40mpcom 38 . . . 4 (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4241expd 415 . . 3 (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
4342impcom 407 . 2 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4443imp 406 1 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {csn 4579  {cpr 4581   class class class wbr 5095  dom cdm 5623  ran crn 5624  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  Walkscwlks 29560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-edg 29011  df-wlks 29563
This theorem is referenced by:  clwlkl1loop  29746  loop1cycl  35109
  Copyright terms: Public domain W3C validator