MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl1loop Structured version   Visualization version   GIF version

Theorem wlkl1loop 29573
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wlkl1loop (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))

Proof of Theorem wlkl1loop
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 29547 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 simp3l 1202 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺))
3 simp2 1137 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃)
4 c0ex 11175 . . . . . . . . . . . . 13 0 ∈ V
54snid 4629 . . . . . . . . . . . 12 0 ∈ {0}
6 oveq2 7398 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = (0..^1))
7 fzo01 13715 . . . . . . . . . . . . 13 (0..^1) = {0}
86, 7eqtrdi 2781 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0..^(♯‘𝐹)) = {0})
95, 8eleqtrrid 2836 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
109ad2antrl 728 . . . . . . . . . 10 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈ (0..^(♯‘𝐹)))
11103ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈ (0..^(♯‘𝐹)))
12 eqid 2730 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1312iedginwlk 29572 . . . . . . . . 9 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
142, 3, 11, 13syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
15 eqid 2730 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1615, 12iswlkg 29548 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
178raleqdv 3301 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
18 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
19 0p1e1 12310 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
2018, 19eqtrdi 2781 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 + 1) = 1)
21 wkslem2 29543 . . . . . . . . . . . . . . . . 17 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2220, 21mpdan 687 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
234, 22ralsn 4648 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))
2417, 23bitrdi 287 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2524ad2antrl 728 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
26 ifptru 1074 . . . . . . . . . . . . . . . . 17 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}))
2726biimpa 476 . . . . . . . . . . . . . . . 16 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})
2827eqcomd 2736 . . . . . . . . . . . . . . 15 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
2928ex 412 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3029ad2antll 729 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3125, 30sylbid 240 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3231com12 32 . . . . . . . . . . 11 (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
33323ad2ant3 1135 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3416, 33biimtrdi 253 . . . . . . . . 9 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))))
35343imp 1110 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
36 edgval 28983 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
3736a1i 11 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3814, 35, 373eltr4d 2844 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
39383exp 1119 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
40393ad2ant1 1133 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
411, 40mpcom 38 . . . 4 (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4241expd 415 . . 3 (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
4342impcom 407 . 2 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4443imp 406 1 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  dom cdm 5641  ran crn 5642  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  Walkscwlks 29531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-wlks 29534
This theorem is referenced by:  clwlkl1loop  29720  loop1cycl  35131
  Copyright terms: Public domain W3C validator