![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabbi | Structured version Visualization version GIF version |
Description: Equality deduction for class abstraction of ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
opabbi | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqopab2b 5327 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 ↔ 𝜓)) | |
2 | 1 | biimpri 229 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∀wal 1520 = wceq 1522 {copab 5024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-opab 5025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |