Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsup Structured version   Visualization version   GIF version

Theorem smflimsup 44248
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsup.n 𝑚𝐹
smflimsup.x 𝑥𝐹
smflimsup.m (𝜑𝑀 ∈ ℤ)
smflimsup.z 𝑍 = (ℤ𝑀)
smflimsup.s (𝜑𝑆 ∈ SAlg)
smflimsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsup.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsup.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflimsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑥,𝑍,𝑚   𝑛,𝑍,𝑚   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflimsup
Dummy variables 𝑗 𝑘 𝑞 𝑤 𝑖 𝑙 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smflimsup.z . 2 𝑍 = (ℤ𝑀)
3 smflimsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smflimsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smflimsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑗 → (ℤ𝑛) = (ℤ𝑗))
76iineq1d 42529 . . . . . . . 8 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚))
8 nfcv 2906 . . . . . . . . . 10 𝑞dom (𝐹𝑚)
9 smflimsup.n . . . . . . . . . . . 12 𝑚𝐹
10 nfcv 2906 . . . . . . . . . . . 12 𝑚𝑞
119, 10nffv 6766 . . . . . . . . . . 11 𝑚(𝐹𝑞)
1211nfdm 5849 . . . . . . . . . 10 𝑚dom (𝐹𝑞)
13 fveq2 6756 . . . . . . . . . . 11 (𝑚 = 𝑞 → (𝐹𝑚) = (𝐹𝑞))
1413dmeqd 5803 . . . . . . . . . 10 (𝑚 = 𝑞 → dom (𝐹𝑚) = dom (𝐹𝑞))
158, 12, 14cbviin 4963 . . . . . . . . 9 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
1615a1i 11 . . . . . . . 8 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
177, 16eqtrd 2778 . . . . . . 7 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
1817cbviunv 4966 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
1918eleq2i 2830 . . . . 5 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
20 nfcv 2906 . . . . . . . 8 𝑞((𝐹𝑚)‘𝑥)
21 nfcv 2906 . . . . . . . . 9 𝑚𝑥
2211, 21nffv 6766 . . . . . . . 8 𝑚((𝐹𝑞)‘𝑥)
2313fveq1d 6758 . . . . . . . 8 (𝑚 = 𝑞 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑞)‘𝑥))
2420, 22, 23cbvmpt 5181 . . . . . . 7 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))
2524fveq2i 6759 . . . . . 6 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))
2625eleq1i 2829 . . . . 5 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ)
2719, 26anbi12i 626 . . . 4 ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ↔ (𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∧ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ))
2827rabbia2 3401 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ}
29 nfcv 2906 . . . . 5 𝑥𝑍
30 nfcv 2906 . . . . . 6 𝑥(ℤ𝑗)
31 smflimsup.x . . . . . . . 8 𝑥𝐹
32 nfcv 2906 . . . . . . . 8 𝑥𝑞
3331, 32nffv 6766 . . . . . . 7 𝑥(𝐹𝑞)
3433nfdm 5849 . . . . . 6 𝑥dom (𝐹𝑞)
3530, 34nfiin 4952 . . . . 5 𝑥 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
3629, 35nfiun 4951 . . . 4 𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
37 nfcv 2906 . . . 4 𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
38 nfv 1918 . . . 4 𝑤(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ
39 nfcv 2906 . . . . . 6 𝑥lim sup
40 nfcv 2906 . . . . . . . 8 𝑥𝑤
4133, 40nffv 6766 . . . . . . 7 𝑥((𝐹𝑞)‘𝑤)
4229, 41nfmpt 5177 . . . . . 6 𝑥(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))
4339, 42nffv 6766 . . . . 5 𝑥(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤)))
44 nfcv 2906 . . . . 5 𝑥
4543, 44nfel 2920 . . . 4 𝑥(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ
46 fveq2 6756 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑞)‘𝑥) = ((𝐹𝑞)‘𝑤))
4746mpteq2dv 5172 . . . . . 6 (𝑥 = 𝑤 → (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)) = (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤)))
4847fveq2d 6760 . . . . 5 (𝑥 = 𝑤 → (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) = (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
4948eleq1d 2823 . . . 4 (𝑥 = 𝑤 → ((lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ))
5036, 37, 38, 45, 49cbvrabw 3414 . . 3 {𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ} = {𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ}
515, 28, 503eqtri 2770 . 2 𝐷 = {𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ}
52 smflimsup.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
5325mpteq2i 5175 . . 3 (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))))
54 nfrab1 3310 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
555, 54nfcxfr 2904 . . . 4 𝑥𝐷
56 nfcv 2906 . . . 4 𝑤𝐷
57 nfcv 2906 . . . 4 𝑤(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))
5855, 56, 57, 43, 48cbvmptf 5179 . . 3 (𝑥𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))) = (𝑤𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
5952, 53, 583eqtri 2770 . 2 𝐺 = (𝑤𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
60 nfcv 2906 . . . . . . 7 𝑥(ℤ𝑖)
6160, 34nfiin 4952 . . . . . 6 𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
62 nfcv 2906 . . . . . 6 𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
63 nfv 1918 . . . . . 6 𝑤sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ
6460, 41nfmpt 5177 . . . . . . . . 9 𝑥(𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤))
6564nfrn 5850 . . . . . . . 8 𝑥ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤))
66 nfcv 2906 . . . . . . . 8 𝑥*
67 nfcv 2906 . . . . . . . 8 𝑥 <
6865, 66, 67nfsup 9140 . . . . . . 7 𝑥sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )
6968, 44nfel 2920 . . . . . 6 𝑥sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ
7046mpteq2dv 5172 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)) = (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)))
7170rneqd 5836 . . . . . . . 8 (𝑥 = 𝑤 → ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)) = ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)))
7271supeq1d 9135 . . . . . . 7 (𝑥 = 𝑤 → sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
7372eleq1d 2823 . . . . . 6 (𝑥 = 𝑤 → (sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ))
7461, 62, 63, 69, 73cbvrabw 3414 . . . . 5 {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ}
7574a1i 11 . . . 4 (𝑖 = 𝑘 → {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
76 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7776iineq1d 42529 . . . . . . 7 (𝑖 = 𝑘 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) = 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞))
7877eleq2d 2824 . . . . . 6 (𝑖 = 𝑘 → (𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ↔ 𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞)))
7976mpteq1d 5165 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)) = (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
8079rneqd 5836 . . . . . . . 8 (𝑖 = 𝑘 → ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
8180supeq1d 9135 . . . . . . 7 (𝑖 = 𝑘 → sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
8281eleq1d 2823 . . . . . 6 (𝑖 = 𝑘 → (sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ))
8378, 82anbi12d 630 . . . . 5 (𝑖 = 𝑘 → ((𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ) ↔ (𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ)))
8483rabbidva2 3400 . . . 4 (𝑖 = 𝑘 → {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
8575, 84eqtrd 2778 . . 3 (𝑖 = 𝑘 → {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
8685cbvmptv 5183 . 2 (𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ}) = (𝑘𝑍 ↦ {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
87 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝐹𝑝)‘𝑦) = ((𝐹𝑝)‘𝑤))
8887mpteq2dv 5172 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)) = (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)))
8988rneqd 5836 . . . . . . . 8 (𝑦 = 𝑤 → ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)) = ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)))
9089supeq1d 9135 . . . . . . 7 (𝑦 = 𝑤 → sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < ) = sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ))
9190cbvmptv 5183 . . . . . 6 (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ))
92 fveq2 6756 . . . . . . . . . . . . . 14 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
9392dmeqd 5803 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → dom (𝐹𝑝) = dom (𝐹𝑞))
9493cbviinv 4967 . . . . . . . . . . . 12 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) = 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
9594eleq2i 2830 . . . . . . . . . . 11 (𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ↔ 𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞))
96 nfcv 2906 . . . . . . . . . . . . . . 15 𝑞((𝐹𝑝)‘𝑥)
97 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑝(𝐹𝑞)
98 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑝𝑥
9997, 98nffv 6766 . . . . . . . . . . . . . . 15 𝑝((𝐹𝑞)‘𝑥)
10092fveq1d 6758 . . . . . . . . . . . . . . 15 (𝑝 = 𝑞 → ((𝐹𝑝)‘𝑥) = ((𝐹𝑞)‘𝑥))
10196, 99, 100cbvmpt 5181 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)) = (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥))
102101rneqi 5835 . . . . . . . . . . . . 13 ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)) = ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥))
103102supeq1i 9136 . . . . . . . . . . . 12 sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < )
104103eleq1i 2829 . . . . . . . . . . 11 (sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ)
10595, 104anbi12i 626 . . . . . . . . . 10 ((𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∧ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ))
106105rabbia2 3401 . . . . . . . . 9 {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ}
107106mpteq2i 5175 . . . . . . . 8 (𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ}) = (𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})
108107fveq1i 6757 . . . . . . 7 ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) = ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙)
10992fveq1d 6758 . . . . . . . . . 10 (𝑝 = 𝑞 → ((𝐹𝑝)‘𝑤) = ((𝐹𝑞)‘𝑤))
110109cbvmptv 5183 . . . . . . . . 9 (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)) = (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤))
111110rneqi 5835 . . . . . . . 8 ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤))
112111supeq1i 9136 . . . . . . 7 sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )
113108, 112mpteq12i 5176 . . . . . 6 (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
11491, 113eqtri 2766 . . . . 5 (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
115114a1i 11 . . . 4 (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
116 fveq2 6756 . . . . 5 (𝑙 = 𝑘 → ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) = ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘))
117 fveq2 6756 . . . . . . . 8 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
118117mpteq1d 5165 . . . . . . 7 (𝑙 = 𝑘 → (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)) = (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
119118rneqd 5836 . . . . . 6 (𝑙 = 𝑘 → ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
120119supeq1d 9135 . . . . 5 (𝑙 = 𝑘 → sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
121116, 120mpteq12dv 5161 . . . 4 (𝑙 = 𝑘 → (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
122115, 121eqtrd 2778 . . 3 (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
123122cbvmptv 5183 . 2 (𝑙𝑍 ↦ (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < ))) = (𝑘𝑍 ↦ (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
1241, 2, 3, 4, 51, 59, 86, 123smflimsuplem8 44247 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2886  {crab 3067   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  supcsup 9129  cr 10801  *cxr 10939   < clt 10940  cz 12249  cuz 12511  lim supclsp 15107  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ioc 13013  df-ico 13014  df-fz 13169  df-fl 13440  df-ceil 13441  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-rest 17050  df-topgen 17071  df-top 21951  df-bases 22004  df-salg 43740  df-salgen 43744  df-smblfn 44124
This theorem is referenced by:  smflimsupmpt  44249
  Copyright terms: Public domain W3C validator