Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsup Structured version   Visualization version   GIF version

Theorem smflimsup 46139
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsup.n 𝑚𝐹
smflimsup.x 𝑥𝐹
smflimsup.m (𝜑𝑀 ∈ ℤ)
smflimsup.z 𝑍 = (ℤ𝑀)
smflimsup.s (𝜑𝑆 ∈ SAlg)
smflimsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsup.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsup.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflimsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑥,𝑍,𝑚   𝑛,𝑍,𝑚   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflimsup
Dummy variables 𝑗 𝑘 𝑞 𝑤 𝑖 𝑙 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smflimsup.z . 2 𝑍 = (ℤ𝑀)
3 smflimsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smflimsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smflimsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 fveq2 6891 . . . . . . . . 9 (𝑛 = 𝑗 → (ℤ𝑛) = (ℤ𝑗))
76iineq1d 44379 . . . . . . . 8 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚))
8 nfcv 2898 . . . . . . . . . 10 𝑞dom (𝐹𝑚)
9 smflimsup.n . . . . . . . . . . . 12 𝑚𝐹
10 nfcv 2898 . . . . . . . . . . . 12 𝑚𝑞
119, 10nffv 6901 . . . . . . . . . . 11 𝑚(𝐹𝑞)
1211nfdm 5947 . . . . . . . . . 10 𝑚dom (𝐹𝑞)
13 fveq2 6891 . . . . . . . . . . 11 (𝑚 = 𝑞 → (𝐹𝑚) = (𝐹𝑞))
1413dmeqd 5902 . . . . . . . . . 10 (𝑚 = 𝑞 → dom (𝐹𝑚) = dom (𝐹𝑞))
158, 12, 14cbviin 5034 . . . . . . . . 9 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
1615a1i 11 . . . . . . . 8 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑗)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
177, 16eqtrd 2767 . . . . . . 7 (𝑛 = 𝑗 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
1817cbviunv 5037 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
1918eleq2i 2820 . . . . 5 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞))
20 nfcv 2898 . . . . . . . 8 𝑞((𝐹𝑚)‘𝑥)
21 nfcv 2898 . . . . . . . . 9 𝑚𝑥
2211, 21nffv 6901 . . . . . . . 8 𝑚((𝐹𝑞)‘𝑥)
2313fveq1d 6893 . . . . . . . 8 (𝑚 = 𝑞 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑞)‘𝑥))
2420, 22, 23cbvmpt 5253 . . . . . . 7 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))
2524fveq2i 6894 . . . . . 6 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))
2625eleq1i 2819 . . . . 5 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ)
2719, 26anbi12i 626 . . . 4 ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ↔ (𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∧ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ))
2827rabbia2 3430 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ}
29 nfcv 2898 . . . . 5 𝑥𝑍
30 nfcv 2898 . . . . . 6 𝑥(ℤ𝑗)
31 smflimsup.x . . . . . . . 8 𝑥𝐹
32 nfcv 2898 . . . . . . . 8 𝑥𝑞
3331, 32nffv 6901 . . . . . . 7 𝑥(𝐹𝑞)
3433nfdm 5947 . . . . . 6 𝑥dom (𝐹𝑞)
3530, 34nfiin 5022 . . . . 5 𝑥 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
3629, 35nfiun 5021 . . . 4 𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
37 nfcv 2898 . . . 4 𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞)
38 nfv 1910 . . . 4 𝑤(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ
39 nfcv 2898 . . . . . 6 𝑥lim sup
40 nfcv 2898 . . . . . . . 8 𝑥𝑤
4133, 40nffv 6901 . . . . . . 7 𝑥((𝐹𝑞)‘𝑤)
4229, 41nfmpt 5249 . . . . . 6 𝑥(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))
4339, 42nffv 6901 . . . . 5 𝑥(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤)))
44 nfcv 2898 . . . . 5 𝑥
4543, 44nfel 2912 . . . 4 𝑥(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ
46 fveq2 6891 . . . . . . 7 (𝑥 = 𝑤 → ((𝐹𝑞)‘𝑥) = ((𝐹𝑞)‘𝑤))
4746mpteq2dv 5244 . . . . . 6 (𝑥 = 𝑤 → (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)) = (𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤)))
4847fveq2d 6895 . . . . 5 (𝑥 = 𝑤 → (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) = (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
4948eleq1d 2813 . . . 4 (𝑥 = 𝑤 → ((lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ))
5036, 37, 38, 45, 49cbvrabw 3462 . . 3 {𝑥 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))) ∈ ℝ} = {𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ}
515, 28, 503eqtri 2759 . 2 𝐷 = {𝑤 𝑗𝑍 𝑞 ∈ (ℤ𝑗)dom (𝐹𝑞) ∣ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))) ∈ ℝ}
52 smflimsup.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
5325mpteq2i 5247 . . 3 (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥))))
54 nfrab1 3446 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
555, 54nfcxfr 2896 . . . 4 𝑥𝐷
56 nfcv 2898 . . . 4 𝑤𝐷
57 nfcv 2898 . . . 4 𝑤(lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))
5855, 56, 57, 43, 48cbvmptf 5251 . . 3 (𝑥𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑥)))) = (𝑤𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
5952, 53, 583eqtri 2759 . 2 𝐺 = (𝑤𝐷 ↦ (lim sup‘(𝑞𝑍 ↦ ((𝐹𝑞)‘𝑤))))
60 nfcv 2898 . . . . . . 7 𝑥(ℤ𝑖)
6160, 34nfiin 5022 . . . . . 6 𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
62 nfcv 2898 . . . . . 6 𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
63 nfv 1910 . . . . . 6 𝑤sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ
6460, 41nfmpt 5249 . . . . . . . . 9 𝑥(𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤))
6564nfrn 5948 . . . . . . . 8 𝑥ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤))
66 nfcv 2898 . . . . . . . 8 𝑥*
67 nfcv 2898 . . . . . . . 8 𝑥 <
6865, 66, 67nfsup 9466 . . . . . . 7 𝑥sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )
6968, 44nfel 2912 . . . . . 6 𝑥sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ
7046mpteq2dv 5244 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)) = (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)))
7170rneqd 5934 . . . . . . . 8 (𝑥 = 𝑤 → ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)) = ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)))
7271supeq1d 9461 . . . . . . 7 (𝑥 = 𝑤 → sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
7372eleq1d 2813 . . . . . 6 (𝑥 = 𝑤 → (sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ))
7461, 62, 63, 69, 73cbvrabw 3462 . . . . 5 {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ}
7574a1i 11 . . . 4 (𝑖 = 𝑘 → {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
76 fveq2 6891 . . . . . . . 8 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
7776iineq1d 44379 . . . . . . 7 (𝑖 = 𝑘 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) = 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞))
7877eleq2d 2814 . . . . . 6 (𝑖 = 𝑘 → (𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ↔ 𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞)))
7976mpteq1d 5237 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)) = (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
8079rneqd 5934 . . . . . . . 8 (𝑖 = 𝑘 → ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
8180supeq1d 9461 . . . . . . 7 (𝑖 = 𝑘 → sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
8281eleq1d 2813 . . . . . 6 (𝑖 = 𝑘 → (sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ))
8378, 82anbi12d 630 . . . . 5 (𝑖 = 𝑘 → ((𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ) ↔ (𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ)))
8483rabbidva2 3429 . . . 4 (𝑖 = 𝑘 → {𝑤 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
8575, 84eqtrd 2767 . . 3 (𝑖 = 𝑘 → {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
8685cbvmptv 5255 . 2 (𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ}) = (𝑘𝑍 ↦ {𝑤 𝑞 ∈ (ℤ𝑘)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) ∈ ℝ})
87 fveq2 6891 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝐹𝑝)‘𝑦) = ((𝐹𝑝)‘𝑤))
8887mpteq2dv 5244 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)) = (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)))
8988rneqd 5934 . . . . . . . 8 (𝑦 = 𝑤 → ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)) = ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)))
9089supeq1d 9461 . . . . . . 7 (𝑦 = 𝑤 → sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < ) = sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ))
9190cbvmptv 5255 . . . . . 6 (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ))
92 fveq2 6891 . . . . . . . . . . . . . 14 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
9392dmeqd 5902 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → dom (𝐹𝑝) = dom (𝐹𝑞))
9493cbviinv 5038 . . . . . . . . . . . 12 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) = 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞)
9594eleq2i 2820 . . . . . . . . . . 11 (𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ↔ 𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞))
96 nfcv 2898 . . . . . . . . . . . . . . 15 𝑞((𝐹𝑝)‘𝑥)
97 nfcv 2898 . . . . . . . . . . . . . . . 16 𝑝(𝐹𝑞)
98 nfcv 2898 . . . . . . . . . . . . . . . 16 𝑝𝑥
9997, 98nffv 6901 . . . . . . . . . . . . . . 15 𝑝((𝐹𝑞)‘𝑥)
10092fveq1d 6893 . . . . . . . . . . . . . . 15 (𝑝 = 𝑞 → ((𝐹𝑝)‘𝑥) = ((𝐹𝑞)‘𝑥))
10196, 99, 100cbvmpt 5253 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)) = (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥))
102101rneqi 5933 . . . . . . . . . . . . 13 ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)) = ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥))
103102supeq1i 9462 . . . . . . . . . . . 12 sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < )
104103eleq1i 2819 . . . . . . . . . . 11 (sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ)
10595, 104anbi12i 626 . . . . . . . . . 10 ((𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∧ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∧ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ))
106105rabbia2 3430 . . . . . . . . 9 {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ}
107106mpteq2i 5247 . . . . . . . 8 (𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ}) = (𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})
108107fveq1i 6892 . . . . . . 7 ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) = ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙)
10992fveq1d 6893 . . . . . . . . . 10 (𝑝 = 𝑞 → ((𝐹𝑝)‘𝑤) = ((𝐹𝑞)‘𝑤))
110109cbvmptv 5255 . . . . . . . . 9 (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)) = (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤))
111110rneqi 5933 . . . . . . . 8 ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤))
112111supeq1i 9462 . . . . . . 7 sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )
113108, 112mpteq12i 5248 . . . . . 6 (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
11491, 113eqtri 2755 . . . . 5 (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
115114a1i 11 . . . 4 (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
116 fveq2 6891 . . . . 5 (𝑙 = 𝑘 → ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) = ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘))
117 fveq2 6891 . . . . . . . 8 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
118117mpteq1d 5237 . . . . . . 7 (𝑙 = 𝑘 → (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)) = (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
119118rneqd 5934 . . . . . 6 (𝑙 = 𝑘 → ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)))
120119supeq1d 9461 . . . . 5 (𝑙 = 𝑘 → sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ) = sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < ))
121116, 120mpteq12dv 5233 . . . 4 (𝑙 = 𝑘 → (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑞 ∈ (ℤ𝑙) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
122115, 121eqtrd 2767 . . 3 (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
123122cbvmptv 5255 . 2 (𝑙𝑍 ↦ (𝑦 ∈ ((𝑖𝑍 ↦ {𝑥 𝑝 ∈ (ℤ𝑖)dom (𝐹𝑝) ∣ sup(ran (𝑝 ∈ (ℤ𝑖) ↦ ((𝐹𝑝)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑙) ↦ sup(ran (𝑝 ∈ (ℤ𝑙) ↦ ((𝐹𝑝)‘𝑦)), ℝ*, < ))) = (𝑘𝑍 ↦ (𝑤 ∈ ((𝑖𝑍 ↦ {𝑥 𝑞 ∈ (ℤ𝑖)dom (𝐹𝑞) ∣ sup(ran (𝑞 ∈ (ℤ𝑖) ↦ ((𝐹𝑞)‘𝑥)), ℝ*, < ) ∈ ℝ})‘𝑘) ↦ sup(ran (𝑞 ∈ (ℤ𝑘) ↦ ((𝐹𝑞)‘𝑤)), ℝ*, < )))
1241, 2, 3, 4, 51, 59, 86, 123smflimsuplem8 46138 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wnfc 2878  {crab 3427   ciun 4991   ciin 4992  cmpt 5225  dom cdm 5672  ran crn 5673  wf 6538  cfv 6542  supcsup 9455  cr 11129  *cxr 11269   < clt 11270  cz 12580  cuz 12844  lim supclsp 15438  SAlgcsalg 45619  SMblFncsmblfn 46006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cc 10450  ax-ac2 10478  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-acn 9957  df-ac 10131  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-ioo 13352  df-ioc 13353  df-ico 13354  df-fz 13509  df-fl 13781  df-ceil 13782  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-rest 17395  df-topgen 17416  df-top 22783  df-bases 22836  df-salg 45620  df-salgen 45624  df-smblfn 46007
This theorem is referenced by:  smflimsupmpt  46140
  Copyright terms: Public domain W3C validator