Step | Hyp | Ref
| Expression |
1 | | smflimsup.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | smflimsup.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | smflimsup.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
4 | | smflimsup.f |
. 2
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
5 | | smflimsup.d |
. . 3
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
6 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑗)) |
7 | 6 | iineq1d 42529 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑚 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑚)) |
8 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑞dom
(𝐹‘𝑚) |
9 | | smflimsup.n |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚𝐹 |
10 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚𝑞 |
11 | 9, 10 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚(𝐹‘𝑞) |
12 | 11 | nfdm 5849 |
. . . . . . . . . 10
⊢
Ⅎ𝑚dom
(𝐹‘𝑞) |
13 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑞 → (𝐹‘𝑚) = (𝐹‘𝑞)) |
14 | 13 | dmeqd 5803 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑞 → dom (𝐹‘𝑚) = dom (𝐹‘𝑞)) |
15 | 8, 12, 14 | cbviin 4963 |
. . . . . . . . 9
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑗)dom (𝐹‘𝑚) = ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ∩
𝑚 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑚) = ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞)) |
17 | 7, 16 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞)) |
18 | 17 | cbviunv 4966 |
. . . . . 6
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) |
19 | 18 | eleq2i 2830 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ 𝑥 ∈ ∪
𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞)) |
20 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑞((𝐹‘𝑚)‘𝑥) |
21 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝑥 |
22 | 11, 21 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝐹‘𝑞)‘𝑥) |
23 | 13 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑚 = 𝑞 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑞)‘𝑥)) |
24 | 20, 22, 23 | cbvmpt 5181 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥)) |
25 | 24 | fveq2i 6759 |
. . . . . 6
⊢ (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) |
26 | 25 | eleq1i 2829 |
. . . . 5
⊢ ((lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ ↔ (lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ) |
27 | 19, 26 | anbi12i 626 |
. . . 4
⊢ ((𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ↔ (𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) ∧ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ)) |
28 | 27 | rabbia2 3401 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) ∣ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ} |
29 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥𝑍 |
30 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥(ℤ≥‘𝑗) |
31 | | smflimsup.x |
. . . . . . . 8
⊢
Ⅎ𝑥𝐹 |
32 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑞 |
33 | 31, 32 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑞) |
34 | 33 | nfdm 5849 |
. . . . . 6
⊢
Ⅎ𝑥dom
(𝐹‘𝑞) |
35 | 30, 34 | nfiin 4952 |
. . . . 5
⊢
Ⅎ𝑥∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) |
36 | 29, 35 | nfiun 4951 |
. . . 4
⊢
Ⅎ𝑥∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) |
37 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) |
38 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑤(lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ |
39 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥lim
sup |
40 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
41 | 33, 40 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐹‘𝑞)‘𝑤) |
42 | 29, 41 | nfmpt 5177 |
. . . . . 6
⊢
Ⅎ𝑥(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤)) |
43 | 39, 42 | nffv 6766 |
. . . . 5
⊢
Ⅎ𝑥(lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) |
44 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥ℝ |
45 | 43, 44 | nfel 2920 |
. . . 4
⊢
Ⅎ𝑥(lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) ∈ ℝ |
46 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑞)‘𝑥) = ((𝐹‘𝑞)‘𝑤)) |
47 | 46 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥)) = (𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) |
48 | 47 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = 𝑤 → (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) = (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤)))) |
49 | 48 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑤 → ((lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ ↔ (lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) ∈ ℝ)) |
50 | 36, 37, 38, 45, 49 | cbvrabw 3414 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) ∣ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) ∈ ℝ} = {𝑤 ∈ ∪
𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) ∣ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) ∈ ℝ} |
51 | 5, 28, 50 | 3eqtri 2770 |
. 2
⊢ 𝐷 = {𝑤 ∈ ∪
𝑗 ∈ 𝑍 ∩ 𝑞 ∈
(ℤ≥‘𝑗)dom (𝐹‘𝑞) ∣ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤))) ∈ ℝ} |
52 | | smflimsup.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
53 | 25 | mpteq2i 5175 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥)))) |
54 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
55 | 5, 54 | nfcxfr 2904 |
. . . 4
⊢
Ⅎ𝑥𝐷 |
56 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤𝐷 |
57 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤(lim
sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥))) |
58 | 55, 56, 57, 43, 48 | cbvmptf 5179 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑥)))) = (𝑤 ∈ 𝐷 ↦ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤)))) |
59 | 52, 53, 58 | 3eqtri 2770 |
. 2
⊢ 𝐺 = (𝑤 ∈ 𝐷 ↦ (lim sup‘(𝑞 ∈ 𝑍 ↦ ((𝐹‘𝑞)‘𝑤)))) |
60 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥(ℤ≥‘𝑖) |
61 | 60, 34 | nfiin 4952 |
. . . . . 6
⊢
Ⅎ𝑥∩ 𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) |
62 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑤∩ 𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) |
63 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑤sup(ran
(𝑞 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ |
64 | 60, 41 | nfmpt 5177 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)) |
65 | 64 | nfrn 5850 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑞 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)) |
66 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥ℝ* |
67 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥
< |
68 | 65, 66, 67 | nfsup 9140 |
. . . . . . 7
⊢
Ⅎ𝑥sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
) |
69 | 68, 44 | nfel 2920 |
. . . . . 6
⊢
Ⅎ𝑥sup(ran
(𝑞 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ |
70 | 46 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)) = (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤))) |
71 | 70 | rneqd 5836 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)) = ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤))) |
72 | 71 | supeq1d 9135 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) = sup(ran
(𝑞 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
)) |
73 | 72 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑞
∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ)) |
74 | 61, 62, 63, 69, 73 | cbvrabw 3414 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑞 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑤 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ} |
75 | 74 | a1i 11 |
. . . 4
⊢ (𝑖 = 𝑘 → {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑤 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ}) |
76 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑘)) |
77 | 76 | iineq1d 42529 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) = ∩ 𝑞 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑞)) |
78 | 77 | eleq2d 2824 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (𝑤 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ↔ 𝑤 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑞))) |
79 | 76 | mpteq1d 5165 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)) = (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤))) |
80 | 79 | rneqd 5836 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤))) |
81 | 80 | supeq1d 9135 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) = sup(ran
(𝑞 ∈
(ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
)) |
82 | 81 | eleq1d 2823 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑞
∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ)) |
83 | 78, 82 | anbi12d 630 |
. . . . 5
⊢ (𝑖 = 𝑘 → ((𝑤 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∧ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ) ↔ (𝑤 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑞) ∧ sup(ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ))) |
84 | 83 | rabbidva2 3400 |
. . . 4
⊢ (𝑖 = 𝑘 → {𝑤 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ} = {𝑤 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ}) |
85 | 75, 84 | eqtrd 2778 |
. . 3
⊢ (𝑖 = 𝑘 → {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑤 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ}) |
86 | 85 | cbvmptv 5183 |
. 2
⊢ (𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ}) = (𝑘 ∈ 𝑍 ↦ {𝑤 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) ∈
ℝ}) |
87 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑝)‘𝑦) = ((𝐹‘𝑝)‘𝑤)) |
88 | 87 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑝 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)) = (𝑝 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤))) |
89 | 88 | rneqd 5836 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ran (𝑝 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)) = ran (𝑝 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤))) |
90 | 89 | supeq1d 9135 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → sup(ran (𝑝 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < ) = sup(ran
(𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)), ℝ*, <
)) |
91 | 90 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)), ℝ*, <
)) |
92 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑞 → (𝐹‘𝑝) = (𝐹‘𝑞)) |
93 | 92 | dmeqd 5803 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑞 → dom (𝐹‘𝑝) = dom (𝐹‘𝑞)) |
94 | 93 | cbviinv 4967 |
. . . . . . . . . . . 12
⊢ ∩ 𝑝 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑝) = ∩ 𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) |
95 | 94 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∩ 𝑝 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑝) ↔ 𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞)) |
96 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑞((𝐹‘𝑝)‘𝑥) |
97 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝(𝐹‘𝑞) |
98 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝𝑥 |
99 | 97, 98 | nffv 6766 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑝((𝐹‘𝑞)‘𝑥) |
100 | 92 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑞 → ((𝐹‘𝑝)‘𝑥) = ((𝐹‘𝑞)‘𝑥)) |
101 | 96, 99, 100 | cbvmpt 5181 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)) = (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)) |
102 | 101 | rneqi 5835 |
. . . . . . . . . . . . 13
⊢ ran
(𝑝 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)) = ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)) |
103 | 102 | supeq1i 9136 |
. . . . . . . . . . . 12
⊢ sup(ran
(𝑝 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) = sup(ran
(𝑞 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, <
) |
104 | 103 | eleq1i 2829 |
. . . . . . . . . . 11
⊢ (sup(ran
(𝑝 ∈
(ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑞
∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ) |
105 | 95, 104 | anbi12i 626 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑝 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑝) ∧ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ) ↔ (𝑥 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑞) ∧ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
106 | 105 | rabbia2 3401 |
. . . . . . . . 9
⊢ {𝑥 ∈ ∩ 𝑝 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑞 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ} |
107 | 106 | mpteq2i 5175 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ}) = (𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
108 | 107 | fveq1i 6757 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) =
((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) |
109 | 92 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑞 → ((𝐹‘𝑝)‘𝑤) = ((𝐹‘𝑞)‘𝑤)) |
110 | 109 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)) = (𝑞 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)) |
111 | 110 | rneqi 5835 |
. . . . . . . 8
⊢ ran
(𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)) = ran (𝑞 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)) |
112 | 111 | supeq1i 9136 |
. . . . . . 7
⊢ sup(ran
(𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)), ℝ*, < ) = sup(ran
(𝑞 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
) |
113 | 108, 112 | mpteq12i 5176 |
. . . . . 6
⊢ (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
)) |
114 | 91, 113 | eqtri 2766 |
. . . . 5
⊢ (𝑦 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
)) |
115 | 114 | a1i 11 |
. . . 4
⊢ (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
))) |
116 | | fveq2 6756 |
. . . . 5
⊢ (𝑙 = 𝑘 → ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) =
((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑘)) |
117 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (ℤ≥‘𝑙) =
(ℤ≥‘𝑘)) |
118 | 117 | mpteq1d 5165 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → (𝑞 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)) = (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤))) |
119 | 118 | rneqd 5836 |
. . . . . 6
⊢ (𝑙 = 𝑘 → ran (𝑞 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)) = ran (𝑞 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤))) |
120 | 119 | supeq1d 9135 |
. . . . 5
⊢ (𝑙 = 𝑘 → sup(ran (𝑞 ∈ (ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < ) = sup(ran
(𝑞 ∈
(ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
)) |
121 | 116, 120 | mpteq12dv 5161 |
. . . 4
⊢ (𝑙 = 𝑘 → (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑘) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
))) |
122 | 115, 121 | eqtrd 2778 |
. . 3
⊢ (𝑙 = 𝑘 → (𝑦 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < )) = (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑘) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
))) |
123 | 122 | cbvmptv 5183 |
. 2
⊢ (𝑙 ∈ 𝑍 ↦ (𝑦 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑝 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑝) ∣ sup(ran (𝑝 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑝)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑙) ↦
sup(ran (𝑝 ∈
(ℤ≥‘𝑙) ↦ ((𝐹‘𝑝)‘𝑦)), ℝ*, < ))) = (𝑘 ∈ 𝑍 ↦ (𝑤 ∈ ((𝑖 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑞 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑞) ∣ sup(ran (𝑞 ∈ (ℤ≥‘𝑖) ↦ ((𝐹‘𝑞)‘𝑥)), ℝ*, < ) ∈
ℝ})‘𝑘) ↦
sup(ran (𝑞 ∈
(ℤ≥‘𝑘) ↦ ((𝐹‘𝑞)‘𝑤)), ℝ*, <
))) |
124 | 1, 2, 3, 4, 51, 59, 86, 123 | smflimsuplem8 44247 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |