Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   GIF version

Theorem smflim2 43878
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 43851 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n 𝑚𝐹
smflim2.x 𝑥𝐹
smflim2.m (𝜑𝑀 ∈ ℤ)
smflim2.z 𝑍 = (ℤ𝑀)
smflim2.s (𝜑𝑆 ∈ SAlg)
smflim2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim2 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim2
Dummy variables 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . 2 𝑗𝐹
2 nfcv 2899 . 2 𝑦𝐹
3 smflim2.m . 2 (𝜑𝑀 ∈ ℤ)
4 smflim2.z . 2 𝑍 = (ℤ𝑀)
5 smflim2.s . 2 (𝜑𝑆 ∈ SAlg)
6 smflim2.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflim2.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
8 nfcv 2899 . . . . 5 𝑥𝑍
9 nfcv 2899 . . . . . 6 𝑥(ℤ𝑛)
10 smflim2.x . . . . . . . 8 𝑥𝐹
11 nfcv 2899 . . . . . . . 8 𝑥𝑚
1210, 11nffv 6684 . . . . . . 7 𝑥(𝐹𝑚)
1312nfdm 5794 . . . . . 6 𝑥dom (𝐹𝑚)
149, 13nfiin 4912 . . . . 5 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
158, 14nfiun 4911 . . . 4 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
16 nfcv 2899 . . . 4 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
17 nfv 1921 . . . 4 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
18 nfcv 2899 . . . . . . 7 𝑗((𝐹𝑚)‘𝑦)
19 smflim2.n . . . . . . . . 9 𝑚𝐹
20 nfcv 2899 . . . . . . . . 9 𝑚𝑗
2119, 20nffv 6684 . . . . . . . 8 𝑚(𝐹𝑗)
22 nfcv 2899 . . . . . . . 8 𝑚𝑦
2321, 22nffv 6684 . . . . . . 7 𝑚((𝐹𝑗)‘𝑦)
24 fveq2 6674 . . . . . . . 8 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
2524fveq1d 6676 . . . . . . 7 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑗)‘𝑦))
2618, 23, 25cbvmpt 5131 . . . . . 6 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
27 nfcv 2899 . . . . . . . . 9 𝑥𝑗
2810, 27nffv 6684 . . . . . . . 8 𝑥(𝐹𝑗)
29 nfcv 2899 . . . . . . . 8 𝑥𝑦
3028, 29nffv 6684 . . . . . . 7 𝑥((𝐹𝑗)‘𝑦)
318, 30nfmpt 5127 . . . . . 6 𝑥(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
3226, 31nfcxfr 2897 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
33 nfcv 2899 . . . . 5 𝑥dom ⇝
3432, 33nfel 2913 . . . 4 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
35 fveq2 6674 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
3635mpteq2dv 5126 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
3736eleq1d 2817 . . . 4 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
3815, 16, 17, 34, 37cbvrabw 3391 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
39 fveq2 6674 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
4039iineq1d 42178 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
41 nfcv 2899 . . . . . . . . . 10 𝑗dom (𝐹𝑚)
4221nfdm 5794 . . . . . . . . . 10 𝑚dom (𝐹𝑗)
4324dmeqd 5748 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
4441, 42, 43cbviin 4923 . . . . . . . . 9 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4544a1i 11 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4640, 45eqtrd 2773 . . . . . . 7 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4746cbviunv 4926 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4847eleq2i 2824 . . . . 5 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4926eleq1i 2823 . . . . 5 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ )
5048, 49anbi12i 630 . . . 4 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∧ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ ))
5150rabbia2 3378 . . 3 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
527, 38, 513eqtri 2765 . 2 𝐷 = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
53 smflim2.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54 nfrab1 3287 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
557, 54nfcxfr 2897 . . . 4 𝑥𝐷
56 nfcv 2899 . . . 4 𝑦𝐷
57 nfcv 2899 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
58 nfcv 2899 . . . . 5 𝑥
5958, 31nffv 6684 . . . 4 𝑥( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6026a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6136, 60eqtrd 2773 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6261fveq2d 6678 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6355, 56, 57, 59, 62cbvmptf 5129 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6453, 63eqtri 2761 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
651, 2, 3, 4, 5, 6, 52, 64smflim 43851 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  wnfc 2879  {crab 3057   ciun 4881   ciin 4882  cmpt 5110  dom cdm 5525  wf 6335  cfv 6339  cz 12062  cuz 12324  cli 14931  SAlgcsalg 43391  SMblFncsmblfn 43775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cc 9935  ax-ac2 9963  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-omul 8136  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-acn 9444  df-ac 9616  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-ioo 12825  df-ico 12827  df-fl 13253  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-rest 16799  df-salg 43392  df-smblfn 43776
This theorem is referenced by:  smflimmpt  43882
  Copyright terms: Public domain W3C validator