Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   GIF version

Theorem smflim2 45522
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 45493 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n 𝑚𝐹
smflim2.x 𝑥𝐹
smflim2.m (𝜑𝑀 ∈ ℤ)
smflim2.z 𝑍 = (ℤ𝑀)
smflim2.s (𝜑𝑆 ∈ SAlg)
smflim2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim2 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim2
Dummy variables 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . 2 𝑗𝐹
2 nfcv 2904 . 2 𝑦𝐹
3 smflim2.m . 2 (𝜑𝑀 ∈ ℤ)
4 smflim2.z . 2 𝑍 = (ℤ𝑀)
5 smflim2.s . 2 (𝜑𝑆 ∈ SAlg)
6 smflim2.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflim2.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
8 nfcv 2904 . . . . 5 𝑥𝑍
9 nfcv 2904 . . . . . 6 𝑥(ℤ𝑛)
10 smflim2.x . . . . . . . 8 𝑥𝐹
11 nfcv 2904 . . . . . . . 8 𝑥𝑚
1210, 11nffv 6902 . . . . . . 7 𝑥(𝐹𝑚)
1312nfdm 5951 . . . . . 6 𝑥dom (𝐹𝑚)
149, 13nfiin 5029 . . . . 5 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
158, 14nfiun 5028 . . . 4 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
16 nfcv 2904 . . . 4 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
17 nfv 1918 . . . 4 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
18 nfcv 2904 . . . . . . 7 𝑗((𝐹𝑚)‘𝑦)
19 smflim2.n . . . . . . . . 9 𝑚𝐹
20 nfcv 2904 . . . . . . . . 9 𝑚𝑗
2119, 20nffv 6902 . . . . . . . 8 𝑚(𝐹𝑗)
22 nfcv 2904 . . . . . . . 8 𝑚𝑦
2321, 22nffv 6902 . . . . . . 7 𝑚((𝐹𝑗)‘𝑦)
24 fveq2 6892 . . . . . . . 8 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
2524fveq1d 6894 . . . . . . 7 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑗)‘𝑦))
2618, 23, 25cbvmpt 5260 . . . . . 6 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
27 nfcv 2904 . . . . . . . . 9 𝑥𝑗
2810, 27nffv 6902 . . . . . . . 8 𝑥(𝐹𝑗)
29 nfcv 2904 . . . . . . . 8 𝑥𝑦
3028, 29nffv 6902 . . . . . . 7 𝑥((𝐹𝑗)‘𝑦)
318, 30nfmpt 5256 . . . . . 6 𝑥(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
3226, 31nfcxfr 2902 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
33 nfcv 2904 . . . . 5 𝑥dom ⇝
3432, 33nfel 2918 . . . 4 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
35 fveq2 6892 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
3635mpteq2dv 5251 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
3736eleq1d 2819 . . . 4 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
3815, 16, 17, 34, 37cbvrabw 3468 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
39 fveq2 6892 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
4039iineq1d 43779 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
41 nfcv 2904 . . . . . . . . . 10 𝑗dom (𝐹𝑚)
4221nfdm 5951 . . . . . . . . . 10 𝑚dom (𝐹𝑗)
4324dmeqd 5906 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
4441, 42, 43cbviin 5041 . . . . . . . . 9 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4544a1i 11 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4640, 45eqtrd 2773 . . . . . . 7 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4746cbviunv 5044 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4847eleq2i 2826 . . . . 5 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4926eleq1i 2825 . . . . 5 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ )
5048, 49anbi12i 628 . . . 4 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∧ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ ))
5150rabbia2 3436 . . 3 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
527, 38, 513eqtri 2765 . 2 𝐷 = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
53 smflim2.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54 nfrab1 3452 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
557, 54nfcxfr 2902 . . . 4 𝑥𝐷
56 nfcv 2904 . . . 4 𝑦𝐷
57 nfcv 2904 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
58 nfcv 2904 . . . . 5 𝑥
5958, 31nffv 6902 . . . 4 𝑥( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6026a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6136, 60eqtrd 2773 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6261fveq2d 6896 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6355, 56, 57, 59, 62cbvmptf 5258 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6453, 63eqtri 2761 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
651, 2, 3, 4, 5, 6, 52, 64smflim 45493 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wnfc 2884  {crab 3433   ciun 4998   ciin 4999  cmpt 5232  dom cdm 5677  wf 6540  cfv 6544  cz 12558  cuz 12822  cli 15428  SAlgcsalg 45024  SMblFncsmblfn 45411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-acn 9937  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-ioo 13328  df-ico 13330  df-fl 13757  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-rest 17368  df-salg 45025  df-smblfn 45412
This theorem is referenced by:  smflimmpt  45526
  Copyright terms: Public domain W3C validator