Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   GIF version

Theorem smflim2 44226
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 44199 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n 𝑚𝐹
smflim2.x 𝑥𝐹
smflim2.m (𝜑𝑀 ∈ ℤ)
smflim2.z 𝑍 = (ℤ𝑀)
smflim2.s (𝜑𝑆 ∈ SAlg)
smflim2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim2 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim2
Dummy variables 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . 2 𝑗𝐹
2 nfcv 2906 . 2 𝑦𝐹
3 smflim2.m . 2 (𝜑𝑀 ∈ ℤ)
4 smflim2.z . 2 𝑍 = (ℤ𝑀)
5 smflim2.s . 2 (𝜑𝑆 ∈ SAlg)
6 smflim2.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflim2.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
8 nfcv 2906 . . . . 5 𝑥𝑍
9 nfcv 2906 . . . . . 6 𝑥(ℤ𝑛)
10 smflim2.x . . . . . . . 8 𝑥𝐹
11 nfcv 2906 . . . . . . . 8 𝑥𝑚
1210, 11nffv 6766 . . . . . . 7 𝑥(𝐹𝑚)
1312nfdm 5849 . . . . . 6 𝑥dom (𝐹𝑚)
149, 13nfiin 4952 . . . . 5 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
158, 14nfiun 4951 . . . 4 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
16 nfcv 2906 . . . 4 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
17 nfv 1918 . . . 4 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
18 nfcv 2906 . . . . . . 7 𝑗((𝐹𝑚)‘𝑦)
19 smflim2.n . . . . . . . . 9 𝑚𝐹
20 nfcv 2906 . . . . . . . . 9 𝑚𝑗
2119, 20nffv 6766 . . . . . . . 8 𝑚(𝐹𝑗)
22 nfcv 2906 . . . . . . . 8 𝑚𝑦
2321, 22nffv 6766 . . . . . . 7 𝑚((𝐹𝑗)‘𝑦)
24 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
2524fveq1d 6758 . . . . . . 7 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑗)‘𝑦))
2618, 23, 25cbvmpt 5181 . . . . . 6 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
27 nfcv 2906 . . . . . . . . 9 𝑥𝑗
2810, 27nffv 6766 . . . . . . . 8 𝑥(𝐹𝑗)
29 nfcv 2906 . . . . . . . 8 𝑥𝑦
3028, 29nffv 6766 . . . . . . 7 𝑥((𝐹𝑗)‘𝑦)
318, 30nfmpt 5177 . . . . . 6 𝑥(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
3226, 31nfcxfr 2904 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
33 nfcv 2906 . . . . 5 𝑥dom ⇝
3432, 33nfel 2920 . . . 4 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
35 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
3635mpteq2dv 5172 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
3736eleq1d 2823 . . . 4 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
3815, 16, 17, 34, 37cbvrabw 3414 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
39 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
4039iineq1d 42529 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
41 nfcv 2906 . . . . . . . . . 10 𝑗dom (𝐹𝑚)
4221nfdm 5849 . . . . . . . . . 10 𝑚dom (𝐹𝑗)
4324dmeqd 5803 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
4441, 42, 43cbviin 4963 . . . . . . . . 9 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4544a1i 11 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4640, 45eqtrd 2778 . . . . . . 7 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4746cbviunv 4966 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4847eleq2i 2830 . . . . 5 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4926eleq1i 2829 . . . . 5 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ )
5048, 49anbi12i 626 . . . 4 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∧ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ ))
5150rabbia2 3401 . . 3 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
527, 38, 513eqtri 2770 . 2 𝐷 = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
53 smflim2.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54 nfrab1 3310 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
557, 54nfcxfr 2904 . . . 4 𝑥𝐷
56 nfcv 2906 . . . 4 𝑦𝐷
57 nfcv 2906 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
58 nfcv 2906 . . . . 5 𝑥
5958, 31nffv 6766 . . . 4 𝑥( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6026a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6136, 60eqtrd 2778 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6261fveq2d 6760 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6355, 56, 57, 59, 62cbvmptf 5179 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6453, 63eqtri 2766 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
651, 2, 3, 4, 5, 6, 52, 64smflim 44199 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2886  {crab 3067   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  cz 12249  cuz 12511  cli 15121  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  smflimmpt  44230
  Copyright terms: Public domain W3C validator