Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elixpconstg Structured version   Visualization version   GIF version

Theorem elixpconstg 42528
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
elixpconstg (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elixpconstg
StepHypRef Expression
1 ixpfn 8649 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
2 elixp2 8647 . . . 4 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
32simp3bi 1145 . . 3 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
4 ffnfv 6974 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 3, 4sylanbrc 582 . 2 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
6 elex 3440 . . . . 5 (𝐹𝑉𝐹 ∈ V)
76adantr 480 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 ∈ V)
8 ffn 6584 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
98adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
104simprbi 496 . . . . 5 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1110adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
127, 9, 11, 2syl3anbrc 1341 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹X𝑥𝐴 𝐵)
1312ex 412 . 2 (𝐹𝑉 → (𝐹:𝐴𝐵𝐹X𝑥𝐴 𝐵))
145, 13impbid2 225 1 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  Vcvv 3422   Fn wfn 6413  wf 6414  cfv 6418  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ixp 8644
This theorem is referenced by:  iinhoiicclem  44101
  Copyright terms: Public domain W3C validator