![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elixpconstg | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
elixpconstg | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfn 8942 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) | |
2 | elixp2 8940 | . . . 4 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
3 | 2 | simp3bi 1146 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | ffnfv 7139 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
5 | 1, 3, 4 | sylanbrc 583 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶𝐵) |
6 | elex 3499 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ V) |
8 | ffn 6737 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 Fn 𝐴) |
10 | 4 | simprbi 496 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
12 | 7, 9, 11, 2 | syl3anbrc 1342 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) |
13 | 12 | ex 412 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
14 | 5, 13 | impbid2 226 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 Xcixp 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ixp 8937 |
This theorem is referenced by: iinhoiicclem 46629 |
Copyright terms: Public domain | W3C validator |