Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elixpconstg Structured version   Visualization version   GIF version

Theorem elixpconstg 44081
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
elixpconstg (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elixpconstg
StepHypRef Expression
1 ixpfn 8900 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
2 elixp2 8898 . . . 4 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
32simp3bi 1146 . . 3 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
4 ffnfv 7121 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 3, 4sylanbrc 582 . 2 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
6 elex 3492 . . . . 5 (𝐹𝑉𝐹 ∈ V)
76adantr 480 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 ∈ V)
8 ffn 6718 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
98adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
104simprbi 496 . . . . 5 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1110adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
127, 9, 11, 2syl3anbrc 1342 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹X𝑥𝐴 𝐵)
1312ex 412 . 2 (𝐹𝑉 → (𝐹:𝐴𝐵𝐹X𝑥𝐴 𝐵))
145, 13impbid2 225 1 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wral 3060  Vcvv 3473   Fn wfn 6539  wf 6540  cfv 6544  Xcixp 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ixp 8895
This theorem is referenced by:  iinhoiicclem  45689
  Copyright terms: Public domain W3C validator