| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elixpconstg | Structured version Visualization version GIF version | ||
| Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| elixpconstg | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpfn 8837 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) | |
| 2 | elixp2 8835 | . . . 4 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 3 | 2 | simp3bi 1147 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | ffnfv 7057 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶𝐵) |
| 6 | elex 3459 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ V) |
| 8 | ffn 6656 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 Fn 𝐴) |
| 10 | 4 | simprbi 496 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 12 | 7, 9, 11, 2 | syl3anbrc 1344 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
| 14 | 5, 13 | impbid2 226 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ixp 8832 |
| This theorem is referenced by: iinhoiicclem 46655 |
| Copyright terms: Public domain | W3C validator |