Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elixpconstg Structured version   Visualization version   GIF version

Theorem elixpconstg 45113
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
elixpconstg (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elixpconstg
StepHypRef Expression
1 ixpfn 8917 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
2 elixp2 8915 . . . 4 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
32simp3bi 1147 . . 3 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
4 ffnfv 7109 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 3, 4sylanbrc 583 . 2 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
6 elex 3480 . . . . 5 (𝐹𝑉𝐹 ∈ V)
76adantr 480 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 ∈ V)
8 ffn 6706 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
98adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
104simprbi 496 . . . . 5 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1110adantl 481 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
127, 9, 11, 2syl3anbrc 1344 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹X𝑥𝐴 𝐵)
1312ex 412 . 2 (𝐹𝑉 → (𝐹:𝐴𝐵𝐹X𝑥𝐴 𝐵))
145, 13impbid2 226 1 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  Vcvv 3459   Fn wfn 6526  wf 6527  cfv 6531  Xcixp 8911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ixp 8912
This theorem is referenced by:  iinhoiicclem  46702
  Copyright terms: Public domain W3C validator