| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elixpconstg | Structured version Visualization version GIF version | ||
| Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| elixpconstg | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpfn 8917 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) | |
| 2 | elixp2 8915 | . . . 4 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 3 | 2 | simp3bi 1147 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | ffnfv 7109 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 5 | 1, 3, 4 | sylanbrc 583 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶𝐵) |
| 6 | elex 3480 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ V) |
| 8 | ffn 6706 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 Fn 𝐴) |
| 10 | 4 | simprbi 496 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 12 | 7, 9, 11, 2 | syl3anbrc 1344 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 → 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
| 14 | 5, 13 | impbid2 226 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 Xcixp 8911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ixp 8912 |
| This theorem is referenced by: iinhoiicclem 46702 |
| Copyright terms: Public domain | W3C validator |