Step | Hyp | Ref
| Expression |
1 | | smfliminf.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | smfliminf.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | smfliminf.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
4 | | smfliminf.f |
. 2
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
5 | | smfliminf.d |
. . 3
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
6 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑖∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
7 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑛∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
8 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝑖 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑖)) |
9 | 8 | iineq1d 42529 |
. . . . . 6
⊢ (𝑛 = 𝑖 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑚 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑚)) |
10 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝐹‘𝑚) |
11 | 10 | nfdm 5849 |
. . . . . . . 8
⊢
Ⅎ𝑘dom
(𝐹‘𝑚) |
12 | | smfliminf.n |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝐹 |
13 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝑘 |
14 | 12, 13 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝐹‘𝑘) |
15 | 14 | nfdm 5849 |
. . . . . . . 8
⊢
Ⅎ𝑚dom
(𝐹‘𝑘) |
16 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
17 | 16 | dmeqd 5803 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → dom (𝐹‘𝑚) = dom (𝐹‘𝑘)) |
18 | 11, 15, 17 | cbviin 4963 |
. . . . . . 7
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑖)dom (𝐹‘𝑚) = ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (𝑛 = 𝑖 → ∩
𝑚 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑚) = ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘)) |
20 | 9, 19 | eqtrd 2778 |
. . . . 5
⊢ (𝑛 = 𝑖 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘)) |
21 | 6, 7, 20 | cbviun 4962 |
. . . 4
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
22 | 21 | rabeqi 3406 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
23 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥𝑍 |
24 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥(ℤ≥‘𝑖) |
25 | | smfliminf.x |
. . . . . . . 8
⊢
Ⅎ𝑥𝐹 |
26 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑘 |
27 | 25, 26 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑘) |
28 | 27 | nfdm 5849 |
. . . . . 6
⊢
Ⅎ𝑥dom
(𝐹‘𝑘) |
29 | 24, 28 | nfiin 4952 |
. . . . 5
⊢
Ⅎ𝑥∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
30 | 23, 29 | nfiun 4951 |
. . . 4
⊢
Ⅎ𝑥∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
31 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑦∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) |
32 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑦(lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ |
33 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥lim
inf |
34 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑦 |
35 | 27, 34 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐹‘𝑘)‘𝑦) |
36 | 23, 35 | nfmpt 5177 |
. . . . . 6
⊢
Ⅎ𝑥(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦)) |
37 | 33, 36 | nffv 6766 |
. . . . 5
⊢
Ⅎ𝑥(lim
inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) |
38 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥ℝ |
39 | 37, 38 | nfel 2920 |
. . . 4
⊢
Ⅎ𝑥(lim
inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) ∈ ℝ |
40 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑚 𝑥 = 𝑦 |
41 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
43 | 40, 42 | mpteq2da 5168 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
44 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝐹‘𝑚)‘𝑦) |
45 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝑦 |
46 | 14, 45 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝐹‘𝑘)‘𝑦) |
47 | 16 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑘)‘𝑦)) |
48 | 44, 46, 47 | cbvmpt 5181 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦)) |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) |
50 | 43, 49 | eqtrd 2778 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) |
51 | 50 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = 𝑦 → (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = (lim inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦)))) |
52 | 51 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑦 → ((lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ ↔ (lim
inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) ∈ ℝ)) |
53 | 30, 31, 32, 39, 52 | cbvrabw 3414 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑦 ∈ ∪
𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) ∣ (lim inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) ∈ ℝ} |
54 | 5, 22, 53 | 3eqtri 2770 |
. 2
⊢ 𝐷 = {𝑦 ∈ ∪
𝑖 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑖)dom (𝐹‘𝑘) ∣ (lim inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦))) ∈ ℝ} |
55 | | smfliminf.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
56 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
57 | 5, 56 | nfcxfr 2904 |
. . . 4
⊢
Ⅎ𝑥𝐷 |
58 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑦𝐷 |
59 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑦(lim
inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) |
60 | 57, 58, 59, 37, 51 | cbvmptf 5179 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ (lim inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦)))) |
61 | 55, 60 | eqtri 2766 |
. 2
⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ (lim inf‘(𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑦)))) |
62 | 1, 2, 3, 4, 54, 61 | smfliminflem 44250 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |