Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 46829
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n 𝑚𝐹
smfliminf.x 𝑥𝐹
smfliminf.m (𝜑𝑀 ∈ ℤ)
smfliminf.z 𝑍 = (ℤ𝑀)
smfliminf.s (𝜑𝑆 ∈ SAlg)
smfliminf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminf.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfliminf.z . 2 𝑍 = (ℤ𝑀)
3 smfliminf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfliminf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfliminf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 nfcv 2891 . . . . 5 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
7 nfcv 2891 . . . . 5 𝑛 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
8 fveq2 6858 . . . . . . 7 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
98iineq1d 45084 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
10 nfcv 2891 . . . . . . . . 9 𝑘(𝐹𝑚)
1110nfdm 5915 . . . . . . . 8 𝑘dom (𝐹𝑚)
12 smfliminf.n . . . . . . . . . 10 𝑚𝐹
13 nfcv 2891 . . . . . . . . . 10 𝑚𝑘
1412, 13nffv 6868 . . . . . . . . 9 𝑚(𝐹𝑘)
1514nfdm 5915 . . . . . . . 8 𝑚dom (𝐹𝑘)
16 fveq2 6858 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1716dmeqd 5869 . . . . . . . 8 (𝑚 = 𝑘 → dom (𝐹𝑚) = dom (𝐹𝑘))
1811, 15, 17cbviin 5001 . . . . . . 7 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
209, 19eqtrd 2764 . . . . 5 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
216, 7, 20cbviun 5000 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
2221rabeqi 3419 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
23 nfcv 2891 . . . . 5 𝑥𝑍
24 nfcv 2891 . . . . . 6 𝑥(ℤ𝑖)
25 smfliminf.x . . . . . . . 8 𝑥𝐹
26 nfcv 2891 . . . . . . . 8 𝑥𝑘
2725, 26nffv 6868 . . . . . . 7 𝑥(𝐹𝑘)
2827nfdm 5915 . . . . . 6 𝑥dom (𝐹𝑘)
2924, 28nfiin 4988 . . . . 5 𝑥 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
3023, 29nfiun 4987 . . . 4 𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
31 nfcv 2891 . . . 4 𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
32 nfv 1914 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
33 nfcv 2891 . . . . . 6 𝑥lim inf
34 nfcv 2891 . . . . . . . 8 𝑥𝑦
3527, 34nffv 6868 . . . . . . 7 𝑥((𝐹𝑘)‘𝑦)
3623, 35nfmpt 5205 . . . . . 6 𝑥(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
3733, 36nffv 6868 . . . . 5 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
38 nfcv 2891 . . . . 5 𝑥
3937, 38nfel 2906 . . . 4 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ
40 nfv 1914 . . . . . . . 8 𝑚 𝑥 = 𝑦
41 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4241adantr 480 . . . . . . . 8 ((𝑥 = 𝑦𝑚𝑍) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4340, 42mpteq2da 5199 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
44 nfcv 2891 . . . . . . . . 9 𝑘((𝐹𝑚)‘𝑦)
45 nfcv 2891 . . . . . . . . . 10 𝑚𝑦
4614, 45nffv 6868 . . . . . . . . 9 𝑚((𝐹𝑘)‘𝑦)
4716fveq1d 6860 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑘)‘𝑦))
4844, 46, 47cbvmpt 5209 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
4948a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5043, 49eqtrd 2764 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5150fveq2d 6862 . . . . 5 (𝑥 = 𝑦 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
5251eleq1d 2813 . . . 4 (𝑥 = 𝑦 → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrabw 3441 . . 3 {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
545, 22, 533eqtri 2756 . 2 𝐷 = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
56 nfrab1 3426 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
575, 56nfcxfr 2889 . . . 4 𝑥𝐷
58 nfcv 2891 . . . 4 𝑦𝐷
59 nfcv 2891 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
6057, 58, 59, 37, 51cbvmptf 5207 . . 3 (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
6155, 60eqtri 2752 . 2 𝐺 = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
621, 2, 3, 4, 54, 61smfliminflem 46828 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnfc 2876  {crab 3405   ciun 4955   ciin 4956  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  cr 11067  cz 12529  cuz 12793  lim infclsi 45749  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-s4 14816  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-rest 17385  df-topgen 17406  df-top 22781  df-bases 22833  df-liminf 45750  df-salg 46307  df-salgen 46311  df-smblfn 46694
This theorem is referenced by:  smfliminfmpt  46830
  Copyright terms: Public domain W3C validator