Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 45533
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n 𝑚𝐹
smfliminf.x 𝑥𝐹
smfliminf.m (𝜑𝑀 ∈ ℤ)
smfliminf.z 𝑍 = (ℤ𝑀)
smfliminf.s (𝜑𝑆 ∈ SAlg)
smfliminf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminf.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfliminf.z . 2 𝑍 = (ℤ𝑀)
3 smfliminf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfliminf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfliminf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 nfcv 2903 . . . . 5 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
7 nfcv 2903 . . . . 5 𝑛 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
8 fveq2 6888 . . . . . . 7 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
98iineq1d 43764 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
10 nfcv 2903 . . . . . . . . 9 𝑘(𝐹𝑚)
1110nfdm 5948 . . . . . . . 8 𝑘dom (𝐹𝑚)
12 smfliminf.n . . . . . . . . . 10 𝑚𝐹
13 nfcv 2903 . . . . . . . . . 10 𝑚𝑘
1412, 13nffv 6898 . . . . . . . . 9 𝑚(𝐹𝑘)
1514nfdm 5948 . . . . . . . 8 𝑚dom (𝐹𝑘)
16 fveq2 6888 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1716dmeqd 5903 . . . . . . . 8 (𝑚 = 𝑘 → dom (𝐹𝑚) = dom (𝐹𝑘))
1811, 15, 17cbviin 5039 . . . . . . 7 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
209, 19eqtrd 2772 . . . . 5 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
216, 7, 20cbviun 5038 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
2221rabeqi 3445 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
23 nfcv 2903 . . . . 5 𝑥𝑍
24 nfcv 2903 . . . . . 6 𝑥(ℤ𝑖)
25 smfliminf.x . . . . . . . 8 𝑥𝐹
26 nfcv 2903 . . . . . . . 8 𝑥𝑘
2725, 26nffv 6898 . . . . . . 7 𝑥(𝐹𝑘)
2827nfdm 5948 . . . . . 6 𝑥dom (𝐹𝑘)
2924, 28nfiin 5027 . . . . 5 𝑥 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
3023, 29nfiun 5026 . . . 4 𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
31 nfcv 2903 . . . 4 𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
32 nfv 1917 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
33 nfcv 2903 . . . . . 6 𝑥lim inf
34 nfcv 2903 . . . . . . . 8 𝑥𝑦
3527, 34nffv 6898 . . . . . . 7 𝑥((𝐹𝑘)‘𝑦)
3623, 35nfmpt 5254 . . . . . 6 𝑥(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
3733, 36nffv 6898 . . . . 5 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
38 nfcv 2903 . . . . 5 𝑥
3937, 38nfel 2917 . . . 4 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ
40 nfv 1917 . . . . . . . 8 𝑚 𝑥 = 𝑦
41 fveq2 6888 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4241adantr 481 . . . . . . . 8 ((𝑥 = 𝑦𝑚𝑍) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4340, 42mpteq2da 5245 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
44 nfcv 2903 . . . . . . . . 9 𝑘((𝐹𝑚)‘𝑦)
45 nfcv 2903 . . . . . . . . . 10 𝑚𝑦
4614, 45nffv 6898 . . . . . . . . 9 𝑚((𝐹𝑘)‘𝑦)
4716fveq1d 6890 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑘)‘𝑦))
4844, 46, 47cbvmpt 5258 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
4948a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5043, 49eqtrd 2772 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5150fveq2d 6892 . . . . 5 (𝑥 = 𝑦 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
5251eleq1d 2818 . . . 4 (𝑥 = 𝑦 → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrabw 3467 . . 3 {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
545, 22, 533eqtri 2764 . 2 𝐷 = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
56 nfrab1 3451 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
575, 56nfcxfr 2901 . . . 4 𝑥𝐷
58 nfcv 2903 . . . 4 𝑦𝐷
59 nfcv 2903 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
6057, 58, 59, 37, 51cbvmptf 5256 . . 3 (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
6155, 60eqtri 2760 . 2 𝐺 = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
621, 2, 3, 4, 54, 61smfliminflem 45532 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wnfc 2883  {crab 3432   ciun 4996   ciin 4997  cmpt 5230  dom cdm 5675  wf 6536  cfv 6540  cr 11105  cz 12554  cuz 12818  lim infclsi 44453  SAlgcsalg 45010  SMblFncsmblfn 45397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-ceil 13754  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-s4 14797  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-rest 17364  df-topgen 17385  df-top 22387  df-bases 22440  df-liminf 44454  df-salg 45011  df-salgen 45015  df-smblfn 45398
This theorem is referenced by:  smfliminfmpt  45534
  Copyright terms: Public domain W3C validator