Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 44036
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n 𝑚𝐹
smfliminf.x 𝑥𝐹
smfliminf.m (𝜑𝑀 ∈ ℤ)
smfliminf.z 𝑍 = (ℤ𝑀)
smfliminf.s (𝜑𝑆 ∈ SAlg)
smfliminf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminf.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfliminf.z . 2 𝑍 = (ℤ𝑀)
3 smfliminf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfliminf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfliminf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 nfcv 2904 . . . . 5 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
7 nfcv 2904 . . . . 5 𝑛 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
8 fveq2 6717 . . . . . . 7 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
98iineq1d 42313 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
10 nfcv 2904 . . . . . . . . 9 𝑘(𝐹𝑚)
1110nfdm 5820 . . . . . . . 8 𝑘dom (𝐹𝑚)
12 smfliminf.n . . . . . . . . . 10 𝑚𝐹
13 nfcv 2904 . . . . . . . . . 10 𝑚𝑘
1412, 13nffv 6727 . . . . . . . . 9 𝑚(𝐹𝑘)
1514nfdm 5820 . . . . . . . 8 𝑚dom (𝐹𝑘)
16 fveq2 6717 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1716dmeqd 5774 . . . . . . . 8 (𝑚 = 𝑘 → dom (𝐹𝑚) = dom (𝐹𝑘))
1811, 15, 17cbviin 4946 . . . . . . 7 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
209, 19eqtrd 2777 . . . . 5 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
216, 7, 20cbviun 4945 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
2221rabeqi 3392 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
23 nfcv 2904 . . . . 5 𝑥𝑍
24 nfcv 2904 . . . . . 6 𝑥(ℤ𝑖)
25 smfliminf.x . . . . . . . 8 𝑥𝐹
26 nfcv 2904 . . . . . . . 8 𝑥𝑘
2725, 26nffv 6727 . . . . . . 7 𝑥(𝐹𝑘)
2827nfdm 5820 . . . . . 6 𝑥dom (𝐹𝑘)
2924, 28nfiin 4935 . . . . 5 𝑥 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
3023, 29nfiun 4934 . . . 4 𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
31 nfcv 2904 . . . 4 𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
32 nfv 1922 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
33 nfcv 2904 . . . . . 6 𝑥lim inf
34 nfcv 2904 . . . . . . . 8 𝑥𝑦
3527, 34nffv 6727 . . . . . . 7 𝑥((𝐹𝑘)‘𝑦)
3623, 35nfmpt 5152 . . . . . 6 𝑥(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
3733, 36nffv 6727 . . . . 5 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
38 nfcv 2904 . . . . 5 𝑥
3937, 38nfel 2918 . . . 4 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ
40 nfv 1922 . . . . . . . 8 𝑚 𝑥 = 𝑦
41 fveq2 6717 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4241adantr 484 . . . . . . . 8 ((𝑥 = 𝑦𝑚𝑍) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4340, 42mpteq2da 5149 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
44 nfcv 2904 . . . . . . . . 9 𝑘((𝐹𝑚)‘𝑦)
45 nfcv 2904 . . . . . . . . . 10 𝑚𝑦
4614, 45nffv 6727 . . . . . . . . 9 𝑚((𝐹𝑘)‘𝑦)
4716fveq1d 6719 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑘)‘𝑦))
4844, 46, 47cbvmpt 5156 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
4948a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5043, 49eqtrd 2777 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5150fveq2d 6721 . . . . 5 (𝑥 = 𝑦 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
5251eleq1d 2822 . . . 4 (𝑥 = 𝑦 → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrabw 3400 . . 3 {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
545, 22, 533eqtri 2769 . 2 𝐷 = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
56 nfrab1 3296 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
575, 56nfcxfr 2902 . . . 4 𝑥𝐷
58 nfcv 2904 . . . 4 𝑦𝐷
59 nfcv 2904 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
6057, 58, 59, 37, 51cbvmptf 5154 . . 3 (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
6155, 60eqtri 2765 . 2 𝐺 = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
621, 2, 3, 4, 54, 61smfliminflem 44035 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wnfc 2884  {crab 3065   ciun 4904   ciin 4905  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  cr 10728  cz 12176  cuz 12438  lim infclsi 42967  SAlgcsalg 43524  SMblFncsmblfn 43908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-ceil 13368  df-seq 13575  df-exp 13636  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-s4 14415  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-rest 16927  df-topgen 16948  df-top 21791  df-bases 21843  df-liminf 42968  df-salg 43525  df-salgen 43529  df-smblfn 43909
This theorem is referenced by:  smfliminfmpt  44037
  Copyright terms: Public domain W3C validator