Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 46282
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n β„²π‘šπΉ
smfliminf.x β„²π‘₯𝐹
smfliminf.m (πœ‘ β†’ 𝑀 ∈ β„€)
smfliminf.z 𝑍 = (β„€β‰₯β€˜π‘€)
smfliminf.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smfliminf.f (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
smfliminf.d 𝐷 = {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ}
smfliminf.g 𝐺 = (π‘₯ ∈ 𝐷 ↦ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))))
Assertion
Ref Expression
smfliminf (πœ‘ β†’ 𝐺 ∈ (SMblFnβ€˜π‘†))
Distinct variable groups:   𝑛,𝐹   π‘š,𝑍,𝑛,π‘₯
Allowed substitution hints:   πœ‘(π‘₯,π‘š,𝑛)   𝐷(π‘₯,π‘š,𝑛)   𝑆(π‘₯,π‘š,𝑛)   𝐹(π‘₯,π‘š)   𝐺(π‘₯,π‘š,𝑛)   𝑀(π‘₯,π‘š,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (πœ‘ β†’ 𝑀 ∈ β„€)
2 smfliminf.z . 2 𝑍 = (β„€β‰₯β€˜π‘€)
3 smfliminf.s . 2 (πœ‘ β†’ 𝑆 ∈ SAlg)
4 smfliminf.f . 2 (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
5 smfliminf.d . . 3 𝐷 = {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ}
6 nfcv 2892 . . . . 5 β„²π‘–βˆ© π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š)
7 nfcv 2892 . . . . 5 β„²π‘›βˆ© π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
8 fveq2 6894 . . . . . . 7 (𝑛 = 𝑖 β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘–))
98iineq1d 44521 . . . . . 6 (𝑛 = 𝑖 β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = ∩ π‘š ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘š))
10 nfcv 2892 . . . . . . . . 9 β„²π‘˜(πΉβ€˜π‘š)
1110nfdm 5952 . . . . . . . 8 β„²π‘˜dom (πΉβ€˜π‘š)
12 smfliminf.n . . . . . . . . . 10 β„²π‘šπΉ
13 nfcv 2892 . . . . . . . . . 10 β„²π‘šπ‘˜
1412, 13nffv 6904 . . . . . . . . 9 β„²π‘š(πΉβ€˜π‘˜)
1514nfdm 5952 . . . . . . . 8 β„²π‘šdom (πΉβ€˜π‘˜)
16 fveq2 6894 . . . . . . . . 9 (π‘š = π‘˜ β†’ (πΉβ€˜π‘š) = (πΉβ€˜π‘˜))
1716dmeqd 5907 . . . . . . . 8 (π‘š = π‘˜ β†’ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘˜))
1811, 15, 17cbviin 5040 . . . . . . 7 ∩ π‘š ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘š) = ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘š) = ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜))
209, 19eqtrd 2765 . . . . 5 (𝑛 = 𝑖 β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜))
216, 7, 20cbviun 5039 . . . 4 βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
2221rabeqi 3433 . . 3 {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ} = {π‘₯ ∈ βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ}
23 nfcv 2892 . . . . 5 β„²π‘₯𝑍
24 nfcv 2892 . . . . . 6 β„²π‘₯(β„€β‰₯β€˜π‘–)
25 smfliminf.x . . . . . . . 8 β„²π‘₯𝐹
26 nfcv 2892 . . . . . . . 8 β„²π‘₯π‘˜
2725, 26nffv 6904 . . . . . . 7 β„²π‘₯(πΉβ€˜π‘˜)
2827nfdm 5952 . . . . . 6 β„²π‘₯dom (πΉβ€˜π‘˜)
2924, 28nfiin 5027 . . . . 5 β„²π‘₯∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
3023, 29nfiun 5026 . . . 4 β„²π‘₯βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
31 nfcv 2892 . . . 4 Ⅎ𝑦βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜)
32 nfv 1909 . . . 4 Ⅎ𝑦(lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ
33 nfcv 2892 . . . . . 6 β„²π‘₯lim inf
34 nfcv 2892 . . . . . . . 8 β„²π‘₯𝑦
3527, 34nffv 6904 . . . . . . 7 β„²π‘₯((πΉβ€˜π‘˜)β€˜π‘¦)
3623, 35nfmpt 5255 . . . . . 6 β„²π‘₯(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))
3733, 36nffv 6904 . . . . 5 β„²π‘₯(lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦)))
38 nfcv 2892 . . . . 5 β„²π‘₯ℝ
3937, 38nfel 2907 . . . 4 β„²π‘₯(lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))) ∈ ℝ
40 nfv 1909 . . . . . . . 8 β„²π‘š π‘₯ = 𝑦
41 fveq2 6894 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘¦))
4241adantr 479 . . . . . . . 8 ((π‘₯ = 𝑦 ∧ π‘š ∈ 𝑍) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘¦))
4340, 42mpteq2da 5246 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
44 nfcv 2892 . . . . . . . . 9 β„²π‘˜((πΉβ€˜π‘š)β€˜π‘¦)
45 nfcv 2892 . . . . . . . . . 10 β„²π‘šπ‘¦
4614, 45nffv 6904 . . . . . . . . 9 β„²π‘š((πΉβ€˜π‘˜)β€˜π‘¦)
4716fveq1d 6896 . . . . . . . . 9 (π‘š = π‘˜ β†’ ((πΉβ€˜π‘š)β€˜π‘¦) = ((πΉβ€˜π‘˜)β€˜π‘¦))
4844, 46, 47cbvmpt 5259 . . . . . . . 8 (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))
4948a1i 11 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦)))
5043, 49eqtrd 2765 . . . . . 6 (π‘₯ = 𝑦 β†’ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = (π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦)))
5150fveq2d 6898 . . . . 5 (π‘₯ = 𝑦 β†’ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) = (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))))
5251eleq1d 2810 . . . 4 (π‘₯ = 𝑦 β†’ ((lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ ↔ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrabw 3456 . . 3 {π‘₯ ∈ βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ} = {𝑦 ∈ βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜) ∣ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))) ∈ ℝ}
545, 22, 533eqtri 2757 . 2 𝐷 = {𝑦 ∈ βˆͺ 𝑖 ∈ 𝑍 ∩ π‘˜ ∈ (β„€β‰₯β€˜π‘–)dom (πΉβ€˜π‘˜) ∣ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (π‘₯ ∈ 𝐷 ↦ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))))
56 nfrab1 3439 . . . . 5 β„²π‘₯{π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯))) ∈ ℝ}
575, 56nfcxfr 2890 . . . 4 β„²π‘₯𝐷
58 nfcv 2892 . . . 4 Ⅎ𝑦𝐷
59 nfcv 2892 . . . 4 Ⅎ𝑦(lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)))
6057, 58, 59, 37, 51cbvmptf 5257 . . 3 (π‘₯ ∈ 𝐷 ↦ (lim infβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)))) = (𝑦 ∈ 𝐷 ↦ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))))
6155, 60eqtri 2753 . 2 𝐺 = (𝑦 ∈ 𝐷 ↦ (lim infβ€˜(π‘˜ ∈ 𝑍 ↦ ((πΉβ€˜π‘˜)β€˜π‘¦))))
621, 2, 3, 4, 54, 61smfliminflem 46281 1 (πœ‘ β†’ 𝐺 ∈ (SMblFnβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  β„²wnfc 2875  {crab 3419  βˆͺ ciun 4996  βˆ© ciin 4997   ↦ cmpt 5231  dom cdm 5677  βŸΆwf 6543  β€˜cfv 6547  β„cr 11137  β„€cz 12588  β„€β‰₯cuz 12852  lim infclsi 45202  SAlgcsalg 45759  SMblFncsmblfn 46146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-ac2 10486  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-ac 10139  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-ceil 13790  df-seq 13999  df-exp 14059  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-s3 14832  df-s4 14833  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-rest 17403  df-topgen 17424  df-top 22826  df-bases 22879  df-liminf 45203  df-salg 45760  df-salgen 45764  df-smblfn 46147
This theorem is referenced by:  smfliminfmpt  46283
  Copyright terms: Public domain W3C validator