Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 46868
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n 𝑚𝐹
smfliminf.x 𝑥𝐹
smfliminf.m (𝜑𝑀 ∈ ℤ)
smfliminf.z 𝑍 = (ℤ𝑀)
smfliminf.s (𝜑𝑆 ∈ SAlg)
smfliminf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminf.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfliminf.z . 2 𝑍 = (ℤ𝑀)
3 smfliminf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfliminf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfliminf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 nfcv 2894 . . . . 5 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
7 nfcv 2894 . . . . 5 𝑛 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
8 fveq2 6822 . . . . . . 7 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
98iineq1d 45126 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
10 nfcv 2894 . . . . . . . . 9 𝑘(𝐹𝑚)
1110nfdm 5891 . . . . . . . 8 𝑘dom (𝐹𝑚)
12 smfliminf.n . . . . . . . . . 10 𝑚𝐹
13 nfcv 2894 . . . . . . . . . 10 𝑚𝑘
1412, 13nffv 6832 . . . . . . . . 9 𝑚(𝐹𝑘)
1514nfdm 5891 . . . . . . . 8 𝑚dom (𝐹𝑘)
16 fveq2 6822 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1716dmeqd 5845 . . . . . . . 8 (𝑚 = 𝑘 → dom (𝐹𝑚) = dom (𝐹𝑘))
1811, 15, 17cbviin 4986 . . . . . . 7 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
209, 19eqtrd 2766 . . . . 5 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
216, 7, 20cbviun 4985 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
2221rabeqi 3408 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
23 nfcv 2894 . . . . 5 𝑥𝑍
24 nfcv 2894 . . . . . 6 𝑥(ℤ𝑖)
25 smfliminf.x . . . . . . . 8 𝑥𝐹
26 nfcv 2894 . . . . . . . 8 𝑥𝑘
2725, 26nffv 6832 . . . . . . 7 𝑥(𝐹𝑘)
2827nfdm 5891 . . . . . 6 𝑥dom (𝐹𝑘)
2924, 28nfiin 4974 . . . . 5 𝑥 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
3023, 29nfiun 4973 . . . 4 𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
31 nfcv 2894 . . . 4 𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
32 nfv 1915 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
33 nfcv 2894 . . . . . 6 𝑥lim inf
34 nfcv 2894 . . . . . . . 8 𝑥𝑦
3527, 34nffv 6832 . . . . . . 7 𝑥((𝐹𝑘)‘𝑦)
3623, 35nfmpt 5189 . . . . . 6 𝑥(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
3733, 36nffv 6832 . . . . 5 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
38 nfcv 2894 . . . . 5 𝑥
3937, 38nfel 2909 . . . 4 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ
40 nfv 1915 . . . . . . . 8 𝑚 𝑥 = 𝑦
41 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4241adantr 480 . . . . . . . 8 ((𝑥 = 𝑦𝑚𝑍) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4340, 42mpteq2da 5183 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
44 nfcv 2894 . . . . . . . . 9 𝑘((𝐹𝑚)‘𝑦)
45 nfcv 2894 . . . . . . . . . 10 𝑚𝑦
4614, 45nffv 6832 . . . . . . . . 9 𝑚((𝐹𝑘)‘𝑦)
4716fveq1d 6824 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑘)‘𝑦))
4844, 46, 47cbvmpt 5193 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
4948a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5043, 49eqtrd 2766 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5150fveq2d 6826 . . . . 5 (𝑥 = 𝑦 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
5251eleq1d 2816 . . . 4 (𝑥 = 𝑦 → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrabw 3430 . . 3 {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
545, 22, 533eqtri 2758 . 2 𝐷 = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
56 nfrab1 3415 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
575, 56nfcxfr 2892 . . . 4 𝑥𝐷
58 nfcv 2894 . . . 4 𝑦𝐷
59 nfcv 2894 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
6057, 58, 59, 37, 51cbvmptf 5191 . . 3 (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
6155, 60eqtri 2754 . 2 𝐺 = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
621, 2, 3, 4, 54, 61smfliminflem 46867 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wnfc 2879  {crab 3395   ciun 4941   ciin 4942  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  cr 11002  cz 12465  cuz 12729  lim infclsi 45788  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-ceil 13694  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753  df-s4 14754  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-rest 17323  df-topgen 17344  df-top 22807  df-bases 22859  df-liminf 45789  df-salg 46346  df-salgen 46350  df-smblfn 46733
This theorem is referenced by:  smfliminfmpt  46869
  Copyright terms: Public domain W3C validator